-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCentralReceiver.cpp
354 lines (295 loc) · 13.4 KB
/
CentralReceiver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*-------------------------------------------------------------------------------*/
/* SOLAR - The solar thermal power plant simulator */
/* https://github.com/bbopt/solar */
/* */
/* Miguel Diago, Sebastien Le Digabel, Mathieu Lemyre-Garneau, Bastien Talgorn */
/* */
/* Polytechnique Montreal / GERAD */
/* [email protected] */
/* */
/* This program is free software: you can redistribute it and/or modify it */
/* under the terms of the GNU Lesser General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or (at your */
/* option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, but WITHOUT */
/* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or */
/* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License */
/* for more details. */
/* */
/* You should have received a copy of the GNU Lesser General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/*-------------------------------------------------------------------------------*/
#include "CentralReceiver.hpp"
CentralReceiver::CentralReceiver ( MoltenSalt* input ,
MoltenSalt* output ,
double apertureHeight ,
double apertureWidth ,
double insulationThickness ,
double tubeDi ,
double tubeThickness ,
int nbTubes ) :
_input ( input ) ,
_output ( output ) ,
_apertureHeight ( apertureHeight ) ,
_apertureWidth ( apertureWidth ) ,
_insulationThickness ( insulationThickness ) ,
_tubesInsideDiameter ( tubeDi ) ,
_tubesOutsideDiameter ( tubeDi + tubeThickness ) ,
_numberOfTubes ( nbTubes ) {
if (_numberOfTubes * _tubesOutsideDiameter > PI*_apertureWidth/2.0) {
_numberOfTubes = (int)floor(PI*_apertureWidth / _tubesOutsideDiameter);
_numberOfPasses = 1;
}
else {
_numberOfPasses = (int)floor((PI*_apertureWidth / 2.) /
(_numberOfTubes*_tubesOutsideDiameter));
}
_receiverSurfaceArea = PI*_apertureWidth*_apertureHeight/2;
_receiverEfficiency = 1.;
_losses.reserve(24);
_efficiency.reserve(24);
_surfaceTemperature.reserve(24);
}
/*----------------------------------------------------------------------------*/
/* Returns the amount of molten salt that can be heated to the design point */
/* conditions with the provided amount of energy */
/*----------------------------------------------------------------------------*/
double CentralReceiver::computeEnergyToFluid ( double Q_in ) {
// the procedure will go through if energy is inputed from the field
if (Q_in <= 0.0){
_losses.push_back(0.0);
_efficiency.push_back(0.0);
_surfaceTemperature.push_back(0.0);
_msRate.push_back(0.0);
return 0.0;
}
double To = _output->get_temperature();
double Ti = _input->get_temperature();
double eff = 0.7; //default efficiency assumed at 70%
double m_dot_1 = 0.;
double T_ms = (To + Ti) / 2.;
double Del_T;
double mu = MoltenSalt::fComputeViscosity(T_ms);
double m_dot_2, h_ms, T_re_sur,Nus, Re, Pr, V, Q_loss, f;
double Q_cond, Q_em, Q_ref, Q_tot1, Q_tot2, Q_abs;
int count = 0;
int count2 = 0;
m_dot_2 = eff * Q_in / (HEAT_CAPACITY * (To - Ti));
try {
Q_tot2 = 0.0; // compilator warning solved in version 1.0 (2024-05-22)
while ( fabs(m_dot_2 - m_dot_1) > fabs(0.001*m_dot_1) && count < 150 ) {
Q_tot1 = 0.0;
m_dot_1 = m_dot_2;
V = m_dot_1 / (1.0* _numberOfTubes * MS_DENSITY * PI * pow(_tubesInsideDiameter, 2.0) / 4.0);
Re = MS_DENSITY * V * _tubesInsideDiameter / mu;
Pr = HEAT_CAPACITY * mu / MS_CONDUCTIVITY;
if (Re <= 3000.0) {
// for low Re the flow will be laminar and we can't use this
// equation. For laminar flow in circular tubes with constant
// heat flux on the surface Nus = 4.36
Nus = 4.36;
}
else {
// for high Re the flow is assumed to be turbulent
f = pow(0.790*log(Re) - 1.64, -2.0);
Nus = ((f / 8.0)*(Re - 1000)*Pr) / (1.0 + 12.7*sqrt(f / 8.0)*(pow(Pr, 2.0 / 3.0) - 1.0));
}
h_ms = Nus * MS_CONDUCTIVITY / _tubesInsideDiameter;
T_re_sur = (eff * Q_in / (_numberOfTubes*_numberOfPasses * _apertureHeight) )
* ( (_tubesOutsideDiameter / (h_ms * _tubesInsideDiameter)) + ((_tubesOutsideDiameter / (2.*SS_COND)) * log(_tubesOutsideDiameter / _tubesInsideDiameter)) )
+ T_ms;
Del_T = T_re_sur/2.0;
count2 = 0;
while ( fabs(Q_tot1 - Q_in) > 100 ) {
if ( count2 > 0 ) {
if ( Q_tot1 < Q_in && Q_tot2 < Q_in )
T_re_sur += Del_T;
else if ( Q_tot1 > Q_in && Q_tot2 < Q_in ) {
Del_T /= 5.0;
T_re_sur -= Del_T;
}
else if ( Q_tot1 < Q_in && Q_tot2 > Q_in ) {
Del_T /= 5.0;
T_re_sur += Del_T;
}
else if ( Q_tot1 > Q_in && Q_tot2 > Q_in )
T_re_sur -= (Del_T*(2.0/3.0));
}
Q_tot2 = Q_tot1;
Q_abs = (T_re_sur - T_ms)*(_numberOfTubes*_numberOfPasses * _apertureHeight)
/ ( (_tubesOutsideDiameter / (h_ms * _tubesInsideDiameter))
+ ((_tubesOutsideDiameter / (2.0*SS_COND))
* log(_tubesOutsideDiameter / _tubesInsideDiameter)) );
// Compute all losses type:
Q_ref = computeReflectionLosses(Q_in);
Q_em = computeEmissionLosses(T_re_sur);
Q_cond = computeConductionLosses(T_re_sur);
Q_loss = Q_ref + Q_em + Q_cond;
Q_tot1 = Q_loss + Q_abs;
++count2;
if ( count2 > 1E6 ) // Added 2022-11-11
throw std::runtime_error ( "could not find converging value for central receiver absorbed energy (case 1)" );
}
eff = 1 - (Q_loss / Q_in);
m_dot_2 = eff * Q_in / (HEAT_CAPACITY * (To - Ti));
++count;
}
if ( count >= 150 )
throw std::runtime_error ( "could not find converging value for central receiver absorbed energy (case 2)" );
if ( eff <= 0.0 ) {
eff = 0.0;
m_dot_2 = 0.0;
}
}
catch ( const std::runtime_error & ) {
m_dot_2 = 0.0;
eff = 0.0;
Q_loss = 0.0;
T_re_sur = 0.0;
}
_input->set_massFlow ( m_dot_2 );
_output->set_massFlow ( m_dot_2 );
_receiverEfficiency = eff;
// Gathering data:
_losses.push_back ( Q_loss );
_efficiency.push_back ( eff );
_surfaceTemperature.push_back ( T_re_sur );
_msRate.push_back ( m_dot_2 );
return m_dot_2;
}
/*-------------------------------------------------------------------------*/
double CentralReceiver::computeEmissionLosses ( double T_sur ) const {
/*-------------------------------------------------------------------------*/
double losses, Fr, eps_avg;
Fr = (_apertureHeight * _apertureWidth) / (_receiverSurfaceArea + PI*pow(_apertureWidth/2.0,2.0));
eps_avg = EPSILON_RECEIVER_SURF / (EPSILON_RECEIVER_SURF + (1 - EPSILON_RECEIVER_SURF)*Fr);
losses = eps_avg * BOLTZMANN * (pow(T_sur, 4.0) - pow(T_ATM, 4.0)) * Fr * _receiverSurfaceArea;
return losses;
}
/*-------------------------------------------------------------------------*/
double CentralReceiver::computeConductionLosses ( double T ) const {
/*-------------------------------------------------------------------------*/
double k_0 = 0.043; //W/mK
double k_1 = 1.3*pow(10.0, -4); //W/mK^2
double k_insul = k_0 + k_1*(((T + T_ATM) / 2.0) - 273); //W/mK
double A_out = _apertureHeight*PI*_apertureWidth/2.;
double t_insul = _insulationThickness;
double Re = WIND_VELOCITY * (_apertureWidth + 2.0*t_insul) / AIR_VISCOSITY;
double Pr = 0.707; //1 atm 30 deg C
double Nu;
int count = 0;
// Hilpert's correlation for Nu, finding h
double C, m;
if (Re >= 4.0 && Re < 40.0) {
C = 0.911;
m = 0.385;
}
if (Re >= 40.0 && Re < 4000.0) {
C = 0.683;
m = 0.466;
}
if (Re >= 4000.0 && Re < 40000.0) {
C = 0.193;
m = 0.618;
}
if (Re >= 40000.0 ) { // should be an upperbound
C = 0.027;
m = 0.805;
}
Nu = C*pow(Re, m)*pow(Pr, 1.0 / 3.0);
double h_out = AIR_CONDUCTIVITY*Nu / (_apertureWidth + 2.0*t_insul);
// the overall heat transfer coefficient including outside surface convection
double UA = (PI*0.5*_apertureWidth*_apertureHeight)
/ ( + (0.5*_apertureWidth / k_insul)* log((0.5*_apertureWidth + t_insul) / (0.5*_apertureWidth))
+ ((0.5*_apertureWidth) / ((0.5*_apertureWidth + t_insul)*h_out)) );
// the overall heat transfer coefficient for conduction through the tank wall
double UA_cond = (PI*0.5*_apertureWidth*_apertureHeight) /
((0.5*_apertureWidth / k_insul)*log((0.5*_apertureWidth + t_insul) / (0.5*_apertureWidth)) );
// the heat transfer resistance for convection
double R_conv = 1.0 / (h_out*A_out);
double k_conv = 1.0 / R_conv;
double k_rad_wet = BOLTZMANN*EPSILON_OUT*A_out;
// first approximation of heat transfer to outer air excluding radiation losses
double q_out = UA*(T - T_ATM);
double T_surf_out = T - q_out / UA_cond;
double q_1, q_2;
q_1 = 0.;
q_2 = q_out;
try {
while ( fabs(q_2 - q_1) / q_2 > 0.001 && count < 150 ) {
q_1 = q_2;
T_surf_out = fSolveForT(k_rad_wet, k_conv, T, q_1, 0.01);
k_insul = k_0 + k_1*(((T_surf_out + T) / 2.0) - 273.0); // W/mK
UA_cond = (PI*0.5*_apertureWidth*_apertureHeight)
/ ( +(0.5*_apertureWidth / k_insul)*log((0.5*_apertureWidth + t_insul) / (0.5*_apertureWidth)) );
q_2 = (T - T_surf_out)*UA_cond;
++count;
}
if ( count >= 150 )
throw std::runtime_error ( "could not find converging value for receiver conduction losses rate" );
}
catch ( const std::runtime_error & ) {
q_2 = q_out;
}
q_out = q_2;
return q_out;
}
/*----------------------------------------------------------*/
/* This function solves the typical k1*T^4 + k2*T - q = 0 */
/* equation using Newton's method */
/*----------------------------------------------------------*/
double CentralReceiver::fSolveForT ( double coef_T4, double coef_T, double T_max, double q, double eps ) const {
double T_1, T_2;
double g_k, Dg_k;
int count = 0;
T_1 = 0.;
T_2 = T_max;
try {
while (fabs(T_2 - T_1) > eps && count < 150) {
T_1 = T_2;
g_k = coef_T4*pow(T_1, 4.) + coef_T*T_1 - (q + coef_T4*pow(T_ATM, 4.0) + coef_T*T_ATM);
Dg_k = 4.*coef_T4*pow(T_1, 3.0) + coef_T;
T_2 = T_1 - (g_k / Dg_k);
++count;
if (T_2 < T_ATM && T_1 < T_ATM)
throw std::range_error
("Newton method gives impossible result for external surface temperature (Receiver) Setting to T_max");
}
if ( count >= 150 )
throw std::runtime_error ("Newton method could not converge to an external surface temperature (Receiver)");
}
catch ( const std::runtime_error & ) {
T_2 = T_max;
}
return T_2;
}
/*--------------------------------------------------------------*/
double CentralReceiver::computePressureInTubes ( void ) const {
/*--------------------------------------------------------------*/
// 2022-10-21:
// -----------
// With SOLAR3 and x6.txt:
// 22.63675024781991 32.246473558685054 142.86672891680968 26.92517304730389 21.093252906684114 22.0 29.857785323972358 0.36449306092140193 2.7899958004033376 870.2245260346899 49.556166148312144 20.253259690932857 0.03720503051690485 3.489708072839301 565.4948792302774 36.0 1.5450597157331276 0.023546568862376955 0.047943056313100675 8.0
// when fid=1, we get Re=325864 and the exeption is thrown -- Hidden constraint.
// but for fid < 1, the evaluation can complete (but is imprecise).
double A_tubes = PI * pow ( _tubesInsideDiameter / 2.0, 2.0 ); //m^2
double V = _input->get_massFlow() / (MS_DENSITY * A_tubes * _numberOfTubes); //m/s
double mu = MoltenSalt::fComputeViscosity(_input->get_temperature());
double Re = V * _tubesInsideDiameter / mu;
double Lambda;
if ( V > 0 ) {
if ( Re < 2300 )
Lambda = 64.0 / Re;
else if ( Re < 4000 )
Lambda = 0.5*(64.0 / Re + 0.3164*pow(Re, -0.25));
else if ( Re < 100000 )
Lambda = 0.3164*pow(Re, -0.25);
else {
throw std::out_of_range ( "Reynolds number out of range" );
}
return Lambda * _apertureHeight * _numberOfPasses * MS_DENSITY * V*V / (8.0 * A_tubes / (PI*_tubesInsideDiameter));
}
return 0.0;
}