-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_visualize2.py
101 lines (84 loc) · 3.97 KB
/
main_visualize2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import numpy as np
import keras
import keras.backend as K
from PIL import Image
from vis.utils import utils
from vis.visualization import visualize_activation, get_num_filters
from vis.input_modifiers import Jitter
from matplotlib import pyplot as plt
from datasethandler import DatasetHandler
from keras_models import model_loader
def main():
for domain in domains:
for model_name in model_names:
for init_opt in init_opts:
for preprocess_opt in preprocess_opts:
for stage in stages:
log_path = os.path.join(log_path_main, domain, model_name, init_opt, stage)
if not os.path.exists(log_path):
os.makedirs(log_path)
fold = '0'
K.clear_session()
if init_opt == 'random':
model = model_loader.load_full_model(model_name, random_weights = True, no_cats=2)
elif init_opt == 'ImageNet':
model = model_loader.load_full_model(model_name, random_weights = False, no_cats=2)
elif init_opt == 'fine-tuned': # fine-tuned from ImageNet
model_path = os.path.join('log', domain, model_name, 'ImageNet', preprocess_opt, fold, 'stage_5.h5')
model = model_loader.load_full_model(model_name, no_cats=2)
model.load_weights(model_path)
# keras.utils.plot_model(model, to_file=os.path.join(log_path_main, model_name + '.png'))
if model_name == 'ResNet50':
end_layer = ResNet50_layer_names[stage]
elif model_name == 'VGG19':
end_layer = VGG19_layer_names[stage]
ind_layer = utils.find_layer_idx(model, end_layer)
model.layers[-1].activation = keras.activations.linear
model = utils.apply_modifications(model)
#for ind_filter in range(model.layers[ind_layer].output_shape[-1]):
for ind_filter in range(min(200, model.layers[ind_layer].output_shape[-1])):
if stage == 'stage_1':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=0, max_iter=200)
elif stage == 'stage_2':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=1, max_iter=200)
elif stage == 'stage_3':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=2, max_iter=200)
elif stage == 'stage_4':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=1, max_iter=200)
elif stage == 'stage_5':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=0, max_iter=200)
elif stage == 'stage_final':
img = visualize_activation(model, ind_layer, filter_indices = ind_filter, input_modifiers=[Jitter()], tv_weight=2, max_iter=400)
img = Image.fromarray(img, 'RGB')
img.save(os.path.join(log_path, str(ind_filter) + '.png'), 'PNG')
if __name__ == "__main__":
"""domains = ['IR', 'VL']
model_names = ['ResNet50', 'VGG19']
preprocess_opts = ['mean_subtraction', 'scaling']
init_opts = ['ImageNet', 'random', 'fine-tuned']
folds = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
stages = ['stage_1', 'stage_2', 'stage_3', 'stage_4', 'stage_5', 'stage_final']"""
domains = ['IR']
model_names = ['ResNet50']
preprocess_opts = ['mean_subtraction']
init_opts = ['fine-tuned']
stages = ['stage_5', 'stage_final']
ResNet50_layer_names = {'stage_1': 'max_pooling2d_1',
'stage_2': 'activation_10',
'stage_3': 'activation_22',
'stage_4': 'activation_40',
'stage_5': 'add_16',
'stage_final': 'fc_final'}
VGG19_layer_names = {'stage_1': 'block1_pool',
'stage_2': 'block2_pool',
'stage_3': 'block3_pool',
'stage_4': 'block4_pool',
'stage_5': 'block5_pool',
'stage_final': 'fc_final'}
log_path_main = os.path.join('log', 'vis2')
if not os.path.exists(log_path_main):
os.makedirs(log_path_main)
"""os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = ''"""
main()