类似于 java.nio 包 的 Channel,Netty 提供了自己的 Channel 和其子类实现,用于异步 I/O 操作 等。Unsafe 是 Channel 的内部接口,聚合在 Channel 中协助进行网络读写相关的操作,因为它的设计初衷就是 Channel 的内部辅助类,不应该被 Netty 框架 的上层使用者调用,所以被命名为 Unsafe。
Netty 的 Channel 组件 是 Netty 对网络操作的封装,如 网络数据的读写,与客户端建立连接,主动关闭连接 等,也包含了 Netty 框架 相关的一些功能,如 获取该 Chanel 的 EventLoop、ChannelPipeline 等。另外,Netty 并没有直接使用 java.nio 包 的 SocketChannel 和 ServerSocketChannel,而是使用 NioSocketChannel 和 NioServerSocketChannel 对其进行了进一步的封装。下面我们先从 Channel 接口 的 API 开始分析,然后看一下其重要子类的源码实现。
为了便于后面的阅读源码,我们先看下 NioSocketChannel 和 NioServerSocketChannel 的继承关系类图。
public interface Channel extends AttributeMap, ChannelOutboundInvoker, Comparable<Channel> {
/**
* Channel 需要注册到 EventLoop 的多路复用器上,用于处理 I/O事件,
* EventLoop 实际上就是处理网络读写事件的 Reactor线程。
*/
EventLoop eventLoop();
/**
* ChannelMetadata 封装了 TCP参数配置
*/
ChannelMetadata metadata();
/**
* 对于服务端Channel而言,它的父Channel为空;
* 对于客户端Channel,它的 父Channel 就是创建它的 ServerSocketChannel
*/
Channel parent();
/**
* 每个 Channel 都有一个全局唯一标识
*/
ChannelId id();
/**
* 获取当前 Channel 的配置信息,如 CONNECT_TIMEOUT_MILLIS
*/
ChannelConfig config();
/**
* 当前 Channel 是否已经打开
*/
boolean isOpen();
/**
* 当前 Channel 是否已注册进 EventLoop
*/
boolean isRegistered();
/**
* 当前 Channel 是否已激活
*/
boolean isActive();
/**
* 当前 Channel 的本地绑定地址
*/
SocketAddress localAddress();
/**
* 当前 Channel 的远程绑定地址
*/
SocketAddress remoteAddress();
/**
* 当前 Channel 是否可写
*/
boolean isWritable();
/**
* 当前 Channel 内部的 Unsafe对象
*/
Unsafe unsafe();
/**
* 当前 Channel 持有的 ChannelPipeline
*/
ChannelPipeline pipeline();
/**
* 从当前 Channel 中读取数据到第一个 inbound缓冲区 中,如果数据被成功读取,
* 触发ChannelHandler.channelRead(ChannelHandlerContext,Object)事件。
* 读取操作API调用完成之后,紧接着会触发ChannelHandler.channelReadComplete(ChannelHandlerContext)事件,
* 这样业务的ChannelHandler可以决定是否需要继续读取数据。如果己经有读操作请求被挂起,则后续的读操作会被忽略。
*/
@Override
Channel read();
/**
* 将之前写入到发送环形数组中的消息全部写入到目标Chanel中,发送给通信对方
*/
@Override
Channel flush();
}
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
// 父Channel
private final Channel parent;
// Channel的全局唯一标识
private final ChannelId id;
// 内部辅助类 Unsafe
private final Unsafe unsafe;
// Netty 会为每一个 channel 创建一个 pipeline
private final DefaultChannelPipeline pipeline;
// 本地地址
private volatile SocketAddress localAddress;
// 远程主机地址
private volatile SocketAddress remoteAddress;
// 注册到了哪个 EventLoop 上
private volatile EventLoop eventLoop;
// 是否已注册
private volatile boolean registered;
/**
* channnel 会将 网络IO操作 触发到 ChannelPipeline 对应的事件方法。
* Netty 基于事件驱动,我们也可以理解为当 Chnanel 进行 IO操作 时会产生对应的IO 事件,
* 然后驱动事件在 ChannelPipeline 中传播,由对应的 ChannelHandler 对事件进行拦截和处理,
* 不关心的事件可以直接忽略
*/
@Override
public ChannelFuture bind(SocketAddress localAddress) {
return pipeline.bind(localAddress);
}
@Override
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress) {
return pipeline.connect(remoteAddress);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress) {
return pipeline.connect(remoteAddress, localAddress);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, ChannelPromise promise) {
return pipeline.connect(remoteAddress, promise);
}
@Override
public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) {
return pipeline.connect(remoteAddress, localAddress, promise);
}
@Override
public ChannelFuture disconnect() {
return pipeline.disconnect();
}
@Override
public ChannelFuture disconnect(ChannelPromise promise) {
return pipeline.disconnect(promise);
}
@Override
public ChannelFuture close() {
return pipeline.close();
}
@Override
public ChannelFuture close(ChannelPromise promise) {
return pipeline.close(promise);
}
@Override
public ChannelFuture deregister() {
return pipeline.deregister();
}
@Override
public ChannelFuture deregister(ChannelPromise promise) {
return pipeline.deregister(promise);
}
@Override
public Channel flush() {
pipeline.flush();
return this;
}
@Override
public Channel read() {
pipeline.read();
return this;
}
@Override
public ChannelFuture write(Object msg) {
return pipeline.write(msg);
}
@Override
public ChannelFuture write(Object msg, ChannelPromise promise) {
return pipeline.write(msg, promise);
}
@Override
public ChannelFuture writeAndFlush(Object msg) {
return pipeline.writeAndFlush(msg);
}
@Override
public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
return pipeline.writeAndFlush(msg, promise);
}
}
public abstract class AbstractNioChannel extends AbstractChannel {
// AbstractNioChannel 是 NioSocketChannel和NioServerSocketChannel 的公共父类,所以定义
// 了一个 java.nio 的 SocketChannel 和 ServerSocketChannel 的公共父类 SelectableChannel,
// 用于设置 SelectableChannel参数 和进行 IO操作
private final SelectableChannel ch;
// 它代表了 JDK 的 SelectionKey.OP_READ
protected final int readInterestOp;
// 该 SelectionKey 是 Channel 注册到 EventLoop 后返回的,
// 由于 Channel 会面临多个业务线程的并发写操作,当 SelectionKey 被修改了,
// 需要让其他业务线程感知到变化,所以使用volatile保证修改的可见性
volatile SelectionKey selectionKey;
/**
* Channel 的注册
*/
@Override
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}
protected SelectableChannel javaChannel() {
return ch;
}
@Override
protected void doBeginRead() throws Exception {
// Channel.read() 或 ChannelHandlerContext.read() 被调用
final SelectionKey selectionKey = this.selectionKey;
if (!selectionKey.isValid()) {
return;
}
readPending = true;
final int interestOps = selectionKey.interestOps();
if ((interestOps & readInterestOp) == 0) {
selectionKey.interestOps(interestOps | readInterestOp);
}
}
}
public class NioServerSocketChannel extends AbstractNioMessageChannel
implements io.netty.channel.socket.ServerSocketChannel {
// java.nio 包的内容,用于获取 java.nio.channels.ServerSocketChannel 实例
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {
/**
* 获取的是 java.nio.channels.ServerSocketChannel 实例
*/
return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException("Failed to open a server socket.", e);
}
}
/**
* Create a new instance
*/
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
/**
* 在父类中完成了 非阻塞IO的配置,及事件的注册
*/
public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}
/**
* 对 NioServerSocketChannel 来说,它的读取操作就是接收客户端的连接,创建 NioSocketChannel对象
*/
@Override
protected int doReadMessages(List<Object> buf) throws Exception {
// 首先通过 ServerSocketChannel 的 accept()方法 接收新的客户端连接,
// 获取 java.nio.channels.SocketChannel 对象
SocketChannel ch = SocketUtils.accept(javaChannel());
try {
// 如果获取到客户端连接对象 SocketChannel,则利用当前的 NioServerSocketChannel、EventLoop
// 和 SocketChannel 创建新的 NioSocketChannel,并添加到 buf 中
if (ch != null) {
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t);
try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
}
return 0;
}
}
public class NioSocketChannel extends AbstractNioByteChannel implements io.netty.channel.socket.SocketChannel {
// 与 NioServerSocketChannel 一样,也依赖了 java.nio包 的API
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
/**
* 从这里可以看出,NioSocketChannel 对 java.nio.channels.SocketChannel 做了进一步封装
* 使其 适用于 Netty框架
*/
private static SocketChannel newSocket(SelectorProvider provider) {
try {
return provider.openSocketChannel();
} catch (IOException e) {
throw new ChannelException("Failed to open a socket.", e);
}
}
/**
* Create a new instance
*/
public NioSocketChannel() {
this(DEFAULT_SELECTOR_PROVIDER);
}
public NioSocketChannel(SelectorProvider provider) {
this(newSocket(provider));
}
public NioSocketChannel(SocketChannel socket) {
this(null, socket);
}
public NioSocketChannel(Channel parent, SocketChannel socket) {
// 在父类中完成 非阻塞IO的配置,注册事件
super(parent, socket);
config = new NioSocketChannelConfig(this, socket.socket());
}
@Override
protected SocketChannel javaChannel() {
return (SocketChannel) super.javaChannel();
}
@Override
public boolean isActive() {
SocketChannel ch = javaChannel();
return ch.isOpen() && ch.isConnected();
}
/**
* 与远程服务器建立连接
*/
@Override
protected boolean doConnect(SocketAddress remoteAddress, SocketAddress localAddress) throws Exception {
if (localAddress != null) {
doBind0(localAddress);
}
boolean success = false;
try {
// 根据远程地址建立TCP连接,对连接结果进行判断
boolean connected = SocketUtils.connect(javaChannel(), remoteAddress);
if (!connected) {
selectionKey().interestOps(SelectionKey.OP_CONNECT);
}
success = true;
return connected;
} finally {
if (!success) {
doClose();
}
}
}
/**
* 关闭 Channel
*/
@Override
protected void doClose() throws Exception {
super.doClose();
javaChannel().close();
}
/**
* 从 Channel 中读取数据
*/
@Override
protected int doReadBytes(ByteBuf byteBuf) throws Exception {
final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
allocHandle.attemptedBytesRead(byteBuf.writableBytes());
return byteBuf.writeBytes(javaChannel(), allocHandle.attemptedBytesRead());
}
@Override
protected int doWriteBytes(ByteBuf buf) throws Exception {
final int expectedWrittenBytes = buf.readableBytes();
return buf.readBytes(javaChannel(), expectedWrittenBytes);
}
/**
* 向 Channel 中写数据
*/
@Override
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
SocketChannel ch = javaChannel();
int writeSpinCount = config().getWriteSpinCount();
do {
if (in.isEmpty()) {
// All written so clear OP_WRITE
clearOpWrite();
// Directly return here so incompleteWrite(...) is not called.
return;
}
// Ensure the pending writes are made of ByteBufs only.
int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
int nioBufferCnt = in.nioBufferCount();
// Always us nioBuffers() to workaround data-corruption.
// See https://github.com/netty/netty/issues/2761
switch (nioBufferCnt) {
case 0:
// We have something else beside ByteBuffers to write so fallback to normal writes.
writeSpinCount -= doWrite0(in);
break;
case 1: {
// Only one ByteBuf so use non-gathering write
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
ByteBuffer buffer = nioBuffers[0];
int attemptedBytes = buffer.remaining();
final int localWrittenBytes = ch.write(buffer);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
default: {
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
// We limit the max amount to int above so cast is safe
long attemptedBytes = in.nioBufferSize();
final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
// Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes,
maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
}
} while (writeSpinCount > 0);
incompleteWrite(writeSpinCount < 0);
}
}
Unsafe 接口 实际上是 Channel 接口 的辅助接口,它不应该被用户代码直接调用。实际的 IO 读写操作 都是由 Unsafe 接口 负责完成的。
public interface Channel extends AttributeMap, ChannelOutboundInvoker, Comparable<Channel> {
interface Unsafe {
/**
* 返回绑定的 本地地址
*/
SocketAddress localAddress();
/**
* 返回绑定的 远程地址
*/
SocketAddress remoteAddress();
/**
* 将 Channel 注册到 EventLoop 上
*/
void register(EventLoop eventLoop, ChannelPromise promise);
/**
* 绑定 本地地址 到 Channel 上
*/
void bind(SocketAddress localAddress, ChannelPromise promise);
/**
* 连接到远程服务器
*/
void connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise);
/**
* 断开连接
*/
void disconnect(ChannelPromise promise);
/**
* 关闭 Channel
*/
void close(ChannelPromise promise);
/**
* 读就绪 网络事件
*/
void beginRead();
/**
* 发送数据
*/
void write(Object msg, ChannelPromise promise);
/**
* 将缓冲区的数据 刷到 Channel
*/
void flush();
}
}
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
protected abstract class AbstractUnsafe implements Unsafe {
/**
* 将当前 Unsafe 对应的 Channel 注册到 EventLoop 的多路复用器上,
* 然后调用 DefaultChannelPipeline 的 fireChannelRegistered()方法,
* 如果 Channel 被激活 则调用 DefaultChannelPipeline 的 fireChannelActive()方法
*/
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
if (eventLoop == null) {
throw new NullPointerException("eventLoop");
}
if (isRegistered()) {
promise.setFailure(new IllegalStateException("registered to an event loop already"));
return;
}
if (!isCompatible(eventLoop)) {
promise.setFailure(
new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
return;
}
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
}
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
registered = true;
// Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
// user may already fire events through the pipeline in the ChannelFutureListener.
pipeline.invokeHandlerAddedIfNeeded();
safeSetSuccess(promise);
pipeline.fireChannelRegistered();
// Only fire a channelActive if the channel has never been registered. This prevents firing
// multiple channel actives if the channel is deregistered and re-registered.
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
// This channel was registered before and autoRead() is set. This means we need to begin read
// again so that we process inbound data.
//
// See https://github.com/netty/netty/issues/4805
beginRead();
}
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
/**
* 绑定指定的端口,对于服务端 用于绑定监听端口,
* 对于客户端,主要用于指定 客户端Channel 的本地绑定Socket地址。
*/
@Override
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
assertEventLoop();
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
// See: https://github.com/netty/netty/issues/576
if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
localAddress instanceof InetSocketAddress &&
!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
// Warn a user about the fact that a non-root user can't receive a
// broadcast packet on *nix if the socket is bound on non-wildcard address.
logger.warn(
"A non-root user can't receive a broadcast packet if the socket " +
"is not bound to a wildcard address; binding to a non-wildcard " +
"address (" + localAddress + ") anyway as requested.");
}
boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
}
safeSetSuccess(promise);
}
/**
* 客户端 或 服务端,主动关闭连接
*/
@Override
public final void disconnect(final ChannelPromise promise) {
assertEventLoop();
if (!promise.setUncancellable()) {
return;
}
boolean wasActive = isActive();
try {
doDisconnect();
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
if (wasActive && !isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelInactive();
}
});
}
safeSetSuccess(promise);
closeIfClosed(); // doDisconnect() might have closed the channel
}
/**
* 在链路关闭之前需要首先判断是否处于刷新状态,如果处于刷新状态说明还有消息尚
* 未发送出去,需要等到所有消息发送完成再关闭链路,因此,将关闭操作封装成Runnable稍后再执行
*/
@Override
public final void close(final ChannelPromise promise) {
assertEventLoop();
close(promise, CLOSE_CLOSED_CHANNEL_EXCEPTION, CLOSE_CLOSED_CHANNEL_EXCEPTION, false);
}
/**
* 本方法实际上将消息添加到环形发送数组中,并不是真正的写Channel
*/
@Override
public final void write(Object msg, ChannelPromise promise) {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
// If the outboundBuffer is null we know the channel was closed and so
// need to fail the future right away. If it is not null the handling of the rest
// will be done in flush0()
// See https://github.com/netty/netty/issues/2362
safeSetFailure(promise, newWriteException(initialCloseCause));
// release message now to prevent resource-leak
ReferenceCountUtil.release(msg);
return;
}
int size;
try {
msg = filterOutboundMessage(msg);
size = pipeline.estimatorHandle().size(msg);
if (size < 0) {
size = 0;
}
} catch (Throwable t) {
safeSetFailure(promise, t);
ReferenceCountUtil.release(msg);
return;
}
outboundBuffer.addMessage(msg, size, promise);
}
/**
* 将缓冲区中待发送的消息全部写入 Channel,并发送给通信对方
*/
@Override
public final void flush() {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
return;
}
outboundBuffer.addFlush();
flush0();
}
@SuppressWarnings("deprecation")
protected void flush0() {
if (inFlush0) {
// Avoid re-entrance
return;
}
final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null || outboundBuffer.isEmpty()) {
return;
}
inFlush0 = true;
// Mark all pending write requests as failure if the channel is inactive.
if (!isActive()) {
try {
if (isOpen()) {
outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true);
} else {
// Do not trigger channelWritabilityChanged because the channel is closed already.
outboundBuffer.failFlushed(newFlush0Exception(initialCloseCause), false);
}
} finally {
inFlush0 = false;
}
return;
}
try {
doWrite(outboundBuffer);
} catch (Throwable t) {
if (t instanceof IOException && config().isAutoClose()) {
/**
* Just call {@link #close(ChannelPromise, Throwable, boolean)} here which will take care of
* failing all flushed messages and also ensure the actual close of the underlying transport
* will happen before the promises are notified.
*
* This is needed as otherwise {@link #isActive()} , {@link #isOpen()} and {@link #isWritable()}
* may still return {@code true} even if the channel should be closed as result of the exception.
*/
initialCloseCause = t;
close(voidPromise(), t, newFlush0Exception(t), false);
} else {
try {
shutdownOutput(voidPromise(), t);
} catch (Throwable t2) {
initialCloseCause = t;
close(voidPromise(), t2, newFlush0Exception(t), false);
}
}
} finally {
inFlush0 = false;
}
}
}
}
AbstractNioUnsafe 是 AbstractUnsafe 类 的 NIO 实现,它主要实现了 connect 、finishConnect 等方法。
public abstract class AbstractNioChannel extends AbstractChannel {
/**
* 获取当前的连接状态进行缓存,然后发起连接操作。
*/
@Override
public final void connect(
final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
try {
if (connectPromise != null) {
// Already a connect in process.
throw new ConnectionPendingException();
}
boolean wasActive = isActive();
if (doConnect(remoteAddress, localAddress)) {
fulfillConnectPromise(promise, wasActive);
} else {
connectPromise = promise;
requestedRemoteAddress = remoteAddress;
// Schedule connect timeout.
int connectTimeoutMillis = config().getConnectTimeoutMillis();
if (connectTimeoutMillis > 0) {
connectTimeoutFuture = eventLoop().schedule(new Runnable() {
@Override
public void run() {
ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
ConnectTimeoutException cause =
new ConnectTimeoutException("connection timed out: " + remoteAddress);
if (connectPromise != null && connectPromise.tryFailure(cause)) {
close(voidPromise());
}
}
}, connectTimeoutMillis, TimeUnit.MILLISECONDS);
}
promise.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isCancelled()) {
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
close(voidPromise());
}
}
});
}
} catch (Throwable t) {
promise.tryFailure(annotateConnectException(t, remoteAddress));
closeIfClosed();
}
}
/**
* 对 TCP三次握手连接结果 进行判断
*/
@Override
public final void finishConnect() {
// Note this method is invoked by the event loop only if the connection attempt was
// neither cancelled nor timed out.
assert eventLoop().inEventLoop();
try {
boolean wasActive = isActive();
doFinishConnect();
fulfillConnectPromise(connectPromise, wasActive);
} catch (Throwable t) {
fulfillConnectPromise(connectPromise, annotateConnectException(t, requestedRemoteAddress));
} finally {
// Check for null as the connectTimeoutFuture is only created if a connectTimeoutMillis > 0 is used
// See https://github.com/netty/netty/issues/1770
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
}
}
}
}