-
Notifications
You must be signed in to change notification settings - Fork 1
/
dummy_fdica.m
71 lines (54 loc) · 1.78 KB
/
dummy_fdica.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
% Frequency Domain ICA (FDICA) with Natural Gradient Algorithm
clear all; clc;
t=0:pi/100:10*pi;
s1=sin(2*t);
s2=sign(sin(3*t));
% x1=0.2*s1+0.7*s2;
% x2=0.6*s2+0.3*s1;
figure(1);
subplot(211); plot(s1);
subplot(212); plot(s2);
Fs=11025;
f=[1:Fs/2];
mixfrek=[real(fft(uu11')),real(fft(uu12'))];
mixfrek=mixfrek';
%plot frekuensi spektra sinyal input FDICA
figure(3);
subplot(2,1,1)
plot(f,mixfrek(1,f));
title('Frequency spectra of the microphone #1')
xlabel('Frequency (Hz)');
subplot(2,1,2)
plot(f,mixfrek(2,f));
title('Frequency spectra of the microphone #2')
xlabel('Frequency (Hz)');
[N,P]=size(mixfrek) % P=50000, N=3, in this case.
permute=randperm(P); % Generate a permutation vector.
s=mixfrek(:,permute); % Time-scrambled inputs for stationarity.
x=s; % mix input signals
mixes=mixfrek;
% Spheres the data (normalisation).
mx=mean(mixes');
c=cov(mixes');
x=x-mx'*ones(1,P); % Subtract means from mixes.
wz=2*inv(sqrtm(c)); % Get decorrelating matrix.
x=wz*x; % Decorrelate mixes so cov(x')=4*eye(N);
w=pi^2*rand(N); % Initialise unmixing matrix.
M=size(w,2); % M=N usually
sweep=0; oldw=w; olddelta=ones(1,N*N);
Id=eye(M);
L=0.00001; B=30; for I=1:100, sep; end; %ITERASI FDICA
yy=w*wz*mixes; % memisahkan sinyal dalam domain frekuensi
yy11=yy(1,f);
yy12=yy(2,f);
% plot frekuensi spektra sinyal estimasi
figure(4);
subplot(211); plot(yy11);
subplot(212); plot(yy12);
% Transform signals back to time domain.
yy11=real(ifft(yy(1,:)));
yy12=real(ifft(yy(2,:)));
% Plot time domain sinyal estimasi akhir
figure(5);
subplot(211); plot(yy11);
subplot(212); plot(yy12);