-
Notifications
You must be signed in to change notification settings - Fork 0
/
teachable.js
58 lines (49 loc) · 2.51 KB
/
teachable.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
<div>Teachable Machine Audio Model</div>
<button type="button" onclick="init()">Start</button>
<div id="label-container"></div>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/[email protected]/dist/speech-commands.min.js"></script>
<script type="text/javascript">
// more documentation available at
// https://github.com/tensorflow/tfjs-models/tree/master/speech-commands
// the link to your model provided by Teachable Machine export panel
const URL = "./my_model/";
async function createModel() {
const checkpointURL = URL + "model.json"; // model topology
const metadataURL = URL + "metadata.json"; // model metadata
const recognizer = speechCommands.create(
"BROWSER_FFT", // fourier transform type, not useful to change
undefined, // speech commands vocabulary feature, not useful for your models
checkpointURL,
metadataURL);
// check that model and metadata are loaded via HTTPS requests.
await recognizer.ensureModelLoaded();
return recognizer;
}
async function init() {
const recognizer = await createModel();
const classLabels = recognizer.wordLabels(); // get class labels
const labelContainer = document.getElementById("label-container");
for (let i = 0; i < classLabels.length; i++) {
labelContainer.appendChild(document.createElement("div"));
}
// listen() takes two arguments:
// 1. A callback function that is invoked anytime a word is recognized.
// 2. A configuration object with adjustable fields
recognizer.listen(result => {
const scores = result.scores; // probability of prediction for each class
// render the probability scores per class
for (let i = 0; i < classLabels.length; i++) {
const classPrediction = classLabels[i] + ": " + result.scores[i].toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}, {
includeSpectrogram: true, // in case listen should return result.spectrogram
probabilityThreshold: 0.75,
invokeCallbackOnNoiseAndUnknown: true,
overlapFactor: 0.50 // probably want between 0.5 and 0.75. More info in README
});
// Stop the recognition in 5 seconds.
// setTimeout(() => recognizer.stopListening(), 5000);
}
</script>