forked from neurodebian/spm12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_DEM_z.m
81 lines (69 loc) · 2.5 KB
/
spm_DEM_z.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
function [z,w] = spm_DEM_z(M,N)
% creates hierarchical innovations for generating data
% FORMAT [z w] = spm_DEM_z(M,N)
% M - model structure
% N - length of data sequence
%
% z{i} - innovations for level i (N.B. z{end} corresponds to causes)
% w{i} - innovations for level i (state noise)
%
% If there is no fixed or hyper parameterized precision, then unit noise is
% created. It is assumed that this will be later modulated by state
% dependent terms, specified by M.ph and M.pg in spm_DEM_int
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_DEM_z.m 5047 2012-11-09 20:48:20Z karl $
% temporal convolution matrix (with unit variance)
%--------------------------------------------------------------------------
s = M(1).E.s + exp(-16);
dt = M(1).E.dt;
t = ((1:N) - 1)*dt;
K = toeplitz(exp(-t.^2/(2*s^2)));
K = diag(1./sqrt(diag(K*K')))*K;
% create innovations z{i} and w{i}
%--------------------------------------------------------------------------
for i = 1:length(M)
% precision of causes
%======================================================================
P = M(i).V;
% plus prior expectations
%----------------------------------------------------------------------
try
for j = 1:length(M(i).Q)
P = P + M(i).Q{j}*exp(M(i).hE(j));
end
end
% create causes: assume i.i.d. if precision is zero
%----------------------------------------------------------------------
if norm(P,1) == 0;
z{i} = randn(M(i).l,N)*K;
elseif norm(P,1) >= exp(16)
z{i} = sparse(M(i).l,N);
else
z{i} = spm_sqrtm(inv(P))*randn(M(i).l,N)*K;
end
% precision of states
%======================================================================
P = M(i).W;
% plus prior expectations
%----------------------------------------------------------------------
try
for j = 1:length(M(i).R)
P = P + M(i).R{j}*exp(M(i).gE(j));
end
end
% create states: assume i.i.d. if precision (P) is zero
%----------------------------------------------------------------------
if ~isempty(P)
if norm(P,1) == 0;
w{i} = randn(M(i).n,N)*K*dt;
elseif norm(P,1) >= exp(16)
w{i} = sparse(M(i).n,N);
else
w{i} = spm_sqrtm(inv(P))*randn(M(i).n,N)*K*dt;
end
else
w{i} = sparse(0,0);
end
end