-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathguidedfilter.cpp
212 lines (166 loc) · 6 KB
/
guidedfilter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include "guidedfilter.h"
static cv::Mat boxfilter(const cv::Mat &I, int r)
{
cv::Mat result;
cv::blur(I, result, cv::Size(r, r), cv::Point(-1, -1), cv::BORDER_REPLICATE);
return result;
}
static cv::Mat convertTo(const cv::Mat &mat, int depth)
{
if (mat.depth() == depth)
return mat;
cv::Mat result;
mat.convertTo(result, depth);
return result;
}
class GuidedFilterImpl
{
public:
virtual ~GuidedFilterImpl() {}
cv::Mat filter(const cv::Mat &p, int depth);
protected:
int Idepth;
private:
virtual cv::Mat filterSingleChannel(const cv::Mat &p) const = 0;
};
class GuidedFilterMono : public GuidedFilterImpl
{
public:
GuidedFilterMono(const cv::Mat &I, int r, double eps);
private:
virtual cv::Mat filterSingleChannel(const cv::Mat &p) const;
private:
int r;
double eps;
cv::Mat I, mean_I, var_I;
};
class GuidedFilterColor : public GuidedFilterImpl
{
public:
GuidedFilterColor(const cv::Mat &I, int r, double eps);
private:
virtual cv::Mat filterSingleChannel(const cv::Mat &p) const;
private:
std::vector<cv::Mat> Ichannels;
int r;
double eps;
cv::Mat mean_I_r, mean_I_g, mean_I_b;
cv::Mat invrr, invrg, invrb, invgg, invgb, invbb;
};
cv::Mat GuidedFilterImpl::filter(const cv::Mat &p, int depth)
{
cv::Mat p2 = convertTo(p, Idepth);
cv::Mat result;
if (p.channels() == 1)
{
result = filterSingleChannel(p2);
}
else
{
std::vector<cv::Mat> pc;
cv::split(p2, pc);
for (std::size_t i = 0; i < pc.size(); ++i)
pc[i] = filterSingleChannel(pc[i]);
cv::merge(pc, result);
}
return convertTo(result, depth == -1 ? p.depth() : depth);
}
GuidedFilterMono::GuidedFilterMono(const cv::Mat &origI, int r, double eps) : r(r), eps(eps)
{
if (origI.depth() == CV_32F || origI.depth() == CV_64F)
I = origI.clone();
else
I = convertTo(origI, CV_32F);
Idepth = I.depth();
mean_I = boxfilter(I, r);
cv::Mat mean_II = boxfilter(I.mul(I), r);
var_I = mean_II - mean_I.mul(mean_I);
}
cv::Mat GuidedFilterMono::filterSingleChannel(const cv::Mat &p) const
{
cv::Mat mean_p = boxfilter(p, r);
cv::Mat mean_Ip = boxfilter(I.mul(p), r);
cv::Mat cov_Ip = mean_Ip - mean_I.mul(mean_p); // this is the covariance of (I, p) in each local patch.
cv::Mat a = cov_Ip / (var_I + eps); // Eqn. (5) in the paper;
cv::Mat b = mean_p - a.mul(mean_I); // Eqn. (6) in the paper;
cv::Mat mean_a = boxfilter(a, r);
cv::Mat mean_b = boxfilter(b, r);
return mean_a.mul(I) + mean_b;
}
GuidedFilterColor::GuidedFilterColor(const cv::Mat &origI, int r, double eps) : r(r), eps(eps)
{
cv::Mat I;
if (origI.depth() == CV_32F || origI.depth() == CV_64F)
I = origI.clone();
else
I = convertTo(origI, CV_32F);
Idepth = I.depth();
cv::split(I, Ichannels);
mean_I_r = boxfilter(Ichannels[0], r);
mean_I_g = boxfilter(Ichannels[1], r);
mean_I_b = boxfilter(Ichannels[2], r);
// variance of I in each local patch: the matrix Sigma in Eqn (14).
// Note the variance in each local patch is a 3x3 symmetric matrix:
// rr, rg, rb
// Sigma = rg, gg, gb
// rb, gb, bb
cv::Mat var_I_rr = boxfilter(Ichannels[0].mul(Ichannels[0]), r) - mean_I_r.mul(mean_I_r) + eps;
cv::Mat var_I_rg = boxfilter(Ichannels[0].mul(Ichannels[1]), r) - mean_I_r.mul(mean_I_g);
cv::Mat var_I_rb = boxfilter(Ichannels[0].mul(Ichannels[2]), r) - mean_I_r.mul(mean_I_b);
cv::Mat var_I_gg = boxfilter(Ichannels[1].mul(Ichannels[1]), r) - mean_I_g.mul(mean_I_g) + eps;
cv::Mat var_I_gb = boxfilter(Ichannels[1].mul(Ichannels[2]), r) - mean_I_g.mul(mean_I_b);
cv::Mat var_I_bb = boxfilter(Ichannels[2].mul(Ichannels[2]), r) - mean_I_b.mul(mean_I_b) + eps;
// Inverse of Sigma + eps * I
invrr = var_I_gg.mul(var_I_bb) - var_I_gb.mul(var_I_gb);
invrg = var_I_gb.mul(var_I_rb) - var_I_rg.mul(var_I_bb);
invrb = var_I_rg.mul(var_I_gb) - var_I_gg.mul(var_I_rb);
invgg = var_I_rr.mul(var_I_bb) - var_I_rb.mul(var_I_rb);
invgb = var_I_rb.mul(var_I_rg) - var_I_rr.mul(var_I_gb);
invbb = var_I_rr.mul(var_I_gg) - var_I_rg.mul(var_I_rg);
cv::Mat covDet = invrr.mul(var_I_rr) + invrg.mul(var_I_rg) + invrb.mul(var_I_rb);
invrr /= covDet;
invrg /= covDet;
invrb /= covDet;
invgg /= covDet;
invgb /= covDet;
invbb /= covDet;
}
cv::Mat GuidedFilterColor::filterSingleChannel(const cv::Mat &p) const
{
cv::Mat mean_p = boxfilter(p, r);
cv::Mat mean_Ip_r = boxfilter(Ichannels[0].mul(p), r);
cv::Mat mean_Ip_g = boxfilter(Ichannels[1].mul(p), r);
cv::Mat mean_Ip_b = boxfilter(Ichannels[2].mul(p), r);
// covariance of (I, p) in each local patch.
cv::Mat cov_Ip_r = mean_Ip_r - mean_I_r.mul(mean_p);
cv::Mat cov_Ip_g = mean_Ip_g - mean_I_g.mul(mean_p);
cv::Mat cov_Ip_b = mean_Ip_b - mean_I_b.mul(mean_p);
cv::Mat a_r = invrr.mul(cov_Ip_r) + invrg.mul(cov_Ip_g) + invrb.mul(cov_Ip_b);
cv::Mat a_g = invrg.mul(cov_Ip_r) + invgg.mul(cov_Ip_g) + invgb.mul(cov_Ip_b);
cv::Mat a_b = invrb.mul(cov_Ip_r) + invgb.mul(cov_Ip_g) + invbb.mul(cov_Ip_b);
cv::Mat b = mean_p - a_r.mul(mean_I_r) - a_g.mul(mean_I_g) - a_b.mul(mean_I_b); // Eqn. (15) in the paper;
return (boxfilter(a_r, r).mul(Ichannels[0])
+ boxfilter(a_g, r).mul(Ichannels[1])
+ boxfilter(a_b, r).mul(Ichannels[2])
+ boxfilter(b, r)); // Eqn. (16) in the paper;
}
GuidedFilter::GuidedFilter(const cv::Mat &I, int r, double eps)
{
CV_Assert(I.channels() == 1 || I.channels() == 3);
if (I.channels() == 1)
impl_ = new GuidedFilterMono(I, 2 * r + 1, eps);
else
impl_ = new GuidedFilterColor(I, 2 * r + 1, eps);
}
GuidedFilter::~GuidedFilter()
{
delete impl_;
}
cv::Mat GuidedFilter::filter(const cv::Mat &p, int depth) const
{
return impl_->filter(p, depth);
}
cv::Mat guidedFilter(const cv::Mat &I, const cv::Mat &p, int r, double eps, int depth)
{
return GuidedFilter(I, r, eps).filter(p, depth);
}