From d328a192e893b132cb76b86a544312019db403e2 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sat, 28 Dec 2024 01:23:34 +0000 Subject: [PATCH] build based on 41c6f03 --- dev/.documenter-siteinfo.json | 2 +- dev/api/index.html | 8 +- dev/assets/documenter.js | 1126 ++++++++++++-------- dev/assets/themes/catppuccin-frappe.css | 1 + dev/assets/themes/catppuccin-latte.css | 1 + dev/assets/themes/catppuccin-macchiato.css | 1 + dev/assets/themes/catppuccin-mocha.css | 1 + dev/assets/themes/documenter-dark.css | 4 +- dev/assets/themes/documenter-light.css | 4 +- dev/index.html | 4 +- dev/internal/index.html | 2 +- dev/plotting/25bac59b.svg | 124 +++ dev/plotting/bd8d9959.svg | 176 --- dev/plotting/index.html | 4 +- dev/references/index.html | 9 +- dev/search_index.js | 2 +- 16 files changed, 811 insertions(+), 658 deletions(-) create mode 100644 dev/assets/themes/catppuccin-frappe.css create mode 100644 dev/assets/themes/catppuccin-latte.css create mode 100644 dev/assets/themes/catppuccin-macchiato.css create mode 100644 dev/assets/themes/catppuccin-mocha.css create mode 100644 dev/plotting/25bac59b.svg delete mode 100644 dev/plotting/bd8d9959.svg diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 13004989..9f52420e 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-28T01:22:40","documenter_version":"1.0.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-28T01:23:27","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index 3a439cdd..73a3a3d9 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,6 +1,6 @@ -API · PSIS.jl

API

Core functionality

PSIS.PSISResultType
PSISResult

Result of Pareto-smoothed importance sampling (PSIS) using psis.

Properties

  • log_weights: un-normalized Pareto-smoothed log weights
  • weights: normalized Pareto-smoothed weights (allocates a copy)
  • pareto_shape: Pareto $k=ξ$ shape parameter
  • nparams: number of parameters in log_weights
  • ndraws: number of draws in log_weights
  • nchains: number of chains in log_weights
  • reff: the ratio of the effective sample size of the unsmoothed importance ratios and the actual sample size.
  • ess: estimated effective sample size of estimate of mean using smoothed importance samples (see ess_is)
  • tail_length: length of the upper tail of log_weights that was smoothed
  • tail_dist: the generalized Pareto distribution that was fit to the tail of log_weights. Note that the tail weights are scaled to have a maximum of 1, so tail_dist * exp(maximum(log_ratios)) is the corresponding fit directly to the tail of log_ratios.
  • normalized::Bool:indicates whether log_weights are log-normalized along the sample dimensions.

Diagnostic

The pareto_shape parameter $k=ξ$ of the generalized Pareto distribution tail_dist can be used to diagnose reliability and convergence of estimates using the importance weights [1].

  • if $k < \frac{1}{3}$, importance sampling is stable, and importance sampling (IS) and PSIS both are reliable.
  • if $k ≤ \frac{1}{2}$, then the importance ratio distributon has finite variance, and the central limit theorem holds. As $k$ approaches the upper bound, IS becomes less reliable, while PSIS still works well but with a higher RMSE.
  • if $\frac{1}{2} < k ≤ 0.7$, then the variance is infinite, and IS can behave quite poorly. However, PSIS works well in this regime.
  • if $0.7 < k ≤ 1$, then it quickly becomes impractical to collect enough importance weights to reliably compute estimates, and importance sampling is not recommended.
  • if $k > 1$, then neither the variance nor the mean of the raw importance ratios exists. The convergence rate is close to zero, and bias can be large with practical sample sizes.

See PSISPlots.paretoshapeplot for a diagnostic plot.

References

  • [1] Vehtari et al. JMLR 25:72 (2021).
source
PSIS.psisFunction
psis(log_ratios, reff = 1.0; kwargs...) -> PSISResult
-psis!(log_ratios, reff = 1.0; kwargs...) -> PSISResult

Compute Pareto smoothed importance sampling (PSIS) log weights [1].

While psis computes smoothed log weights out-of-place, psis! smooths them in-place.

Arguments

  • log_ratios: an array of logarithms of importance ratios, with size (draws, [chains, [parameters...]]), where chains>1 would be used when chains are generated using Markov chain Monte Carlo.
  • reff::Union{Real,AbstractArray}: the ratio(s) of effective sample size of log_ratios and the actual sample size reff = ess/(draws * chains), used to account for autocorrelation, e.g. due to Markov chain Monte Carlo. If an array, it must have the size (parameters...,) to match log_ratios.

Keywords

  • warn=true: If true, warning messages are delivered
  • normalize=true: If true, the log-weights will be log-normalized so that exp.(log_weights) sums to 1 along the sample dimensions.

Returns

  • result: a PSISResult object containing the results of the Pareto-smoothing.

A warning is raised if the Pareto shape parameter $k ≥ 0.7$. See PSISResult for details and PSISPlots.paretoshapeplot for a diagnostic plot.

Examples

Here we smooth log importance ratios for importance sampling 30 isotropic Student $t$-distributed parameters using standard normal distributions as proposals.

julia> using Distributions
+API · PSIS.jl

API

Core functionality

PSIS.PSISResultType
PSISResult

Result of Pareto-smoothed importance sampling (PSIS) using psis.

Properties

  • log_weights: un-normalized Pareto-smoothed log weights
  • weights: normalized Pareto-smoothed weights (allocates a copy)
  • pareto_shape: Pareto $k=ξ$ shape parameter
  • nparams: number of parameters in log_weights
  • ndraws: number of draws in log_weights
  • nchains: number of chains in log_weights
  • reff: the ratio of the effective sample size of the unsmoothed importance ratios and the actual sample size.
  • ess: estimated effective sample size of estimate of mean using smoothed importance samples (see ess_is)
  • tail_length: length of the upper tail of log_weights that was smoothed
  • tail_dist: the generalized Pareto distribution that was fit to the tail of log_weights. Note that the tail weights are scaled to have a maximum of 1, so tail_dist * exp(maximum(log_ratios)) is the corresponding fit directly to the tail of log_ratios.
  • normalized::Bool:indicates whether log_weights are log-normalized along the sample dimensions.

Diagnostic

The pareto_shape parameter $k=ξ$ of the generalized Pareto distribution tail_dist can be used to diagnose reliability and convergence of estimates using the importance weights [1].

  • if $k < \frac{1}{3}$, importance sampling is stable, and importance sampling (IS) and PSIS both are reliable.
  • if $k ≤ \frac{1}{2}$, then the importance ratio distributon has finite variance, and the central limit theorem holds. As $k$ approaches the upper bound, IS becomes less reliable, while PSIS still works well but with a higher RMSE.
  • if $\frac{1}{2} < k ≤ 0.7$, then the variance is infinite, and IS can behave quite poorly. However, PSIS works well in this regime.
  • if $0.7 < k ≤ 1$, then it quickly becomes impractical to collect enough importance weights to reliably compute estimates, and importance sampling is not recommended.
  • if $k > 1$, then neither the variance nor the mean of the raw importance ratios exists. The convergence rate is close to zero, and bias can be large with practical sample sizes.

See PSISPlots.paretoshapeplot for a diagnostic plot.

References

  • [1] Vehtari et al. JMLR 25:72 (2021).
source
PSIS.psisFunction
psis(log_ratios, reff = 1.0; kwargs...) -> PSISResult
+psis!(log_ratios, reff = 1.0; kwargs...) -> PSISResult

Compute Pareto smoothed importance sampling (PSIS) log weights [1].

While psis computes smoothed log weights out-of-place, psis! smooths them in-place.

Arguments

  • log_ratios: an array of logarithms of importance ratios, with size (draws, [chains, [parameters...]]), where chains>1 would be used when chains are generated using Markov chain Monte Carlo.
  • reff::Union{Real,AbstractArray}: the ratio(s) of effective sample size of log_ratios and the actual sample size reff = ess/(draws * chains), used to account for autocorrelation, e.g. due to Markov chain Monte Carlo. If an array, it must have the size (parameters...,) to match log_ratios.

Keywords

  • warn=true: If true, warning messages are delivered
  • normalize=true: If true, the log-weights will be log-normalized so that exp.(log_weights) sums to 1 along the sample dimensions.

Returns

  • result: a PSISResult object containing the results of the Pareto-smoothing.

A warning is raised if the Pareto shape parameter $k ≥ 0.7$. See PSISResult for details and PSISPlots.paretoshapeplot for a diagnostic plot.

Examples

Here we smooth log importance ratios for importance sampling 30 isotropic Student $t$-distributed parameters using standard normal distributions as proposals.

julia> using Distributions
 
 julia> proposal, target = Normal(), TDist(7);
 
@@ -34,11 +34,11 @@
  (-Inf, 0.5]  good       9 (30.0%)  806
   (0.5, 0.7]  okay      11 (36.7%)  842
     (0.7, 1]  bad        9 (30.0%)  ——
-    (1, Inf)  very bad   1 (3.3%)   ——

References

  • [1] Vehtari et al. JMLR 25:72 (2021).
source
PSIS.ess_isFunction
ess_is(weights; reff=1)

Estimate effective sample size (ESS) for importance sampling over the sample dimensions.

Given normalized weights $w_{1:n}$, the ESS is estimated using the L2-norm of the weights:

\[\mathrm{ESS}(w_{1:n}) = \frac{r_{\mathrm{eff}}}{\sum_{i=1}^n w_i^2}\]

where $r_{\mathrm{eff}}$ is the relative efficiency of the log_weights.

ess_is(result::PSISResult; bad_shape_nan=true)

Estimate ESS for Pareto-smoothed importance sampling.

Note

ESS estimates for Pareto shape values $k > 0.7$, which are unreliable and misleadingly high, are set to NaN. To avoid this, set bad_shape_nan=false.

source

Plotting

PSIS.ess_isFunction
ess_is(weights; reff=1)

Estimate effective sample size (ESS) for importance sampling over the sample dimensions.

Given normalized weights $w_{1:n}$, the ESS is estimated using the L2-norm of the weights:

\[\mathrm{ESS}(w_{1:n}) = \frac{r_{\mathrm{eff}}}{\sum_{i=1}^n w_i^2}\]

where $r_{\mathrm{eff}}$ is the relative efficiency of the log_weights.

ess_is(result::PSISResult; bad_shape_nan=true)

Estimate ESS for Pareto-smoothed importance sampling.

Note

ESS estimates for Pareto shape values $k > 0.7$, which are unreliable and misleadingly high, are set to NaN. To avoid this, set bad_shape_nan=false.

source

Plotting

PSIS.PSISPlots.paretoshapeplotFunction
paretoshapeplot(values; showlines=false, ...)
 paretoshapeplot!(values; showlines=false, kwargs...)

Plot shape parameters of fitted Pareto tail distributions for diagnosing convergence.

values may be either a vector of Pareto shape parameters or a PSIS.PSISResult.

If showlines==true, horizontal lines indicating relevant Pareto shape thresholds are drawn. See PSIS.PSISResult for an explanation of the thresholds.

All remaining kwargs are forwarded to the plotting function.

See psis, PSISResult.

Examples

using PSIS, Distributions, Plots
 proposal = Normal()
 target = TDist(7)
 x = rand(proposal, 1_000, 100)
 log_ratios = logpdf.(target, x) .- logpdf.(proposal, x)
 result = psis(log_ratios)
-paretoshapeplot(result)

We can also plot the Pareto shape parameters directly:

paretoshapeplot(result.pareto_shape)

We can also use plot directly:

plot(result.pareto_shape; showlines=true)
source
+paretoshapeplot(result)

We can also plot the Pareto shape parameters directly:

paretoshapeplot(result.pareto_shape)

We can also use plot directly:

plot(result.pareto_shape; showlines=true)
source
diff --git a/dev/assets/documenter.js b/dev/assets/documenter.js index 7002e251..7d68cd80 100644 --- a/dev/assets/documenter.js +++ b/dev/assets/documenter.js @@ -4,7 +4,6 @@ requirejs.config({ 'highlight-julia': 'https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.8.0/languages/julia.min', 'headroom': 'https://cdnjs.cloudflare.com/ajax/libs/headroom/0.12.0/headroom.min', 'jqueryui': 'https://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.13.2/jquery-ui.min', - 'minisearch': 'https://cdn.jsdelivr.net/npm/minisearch@6.1.0/dist/umd/index.min', 'katex-auto-render': 'https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.8/contrib/auto-render.min', 'jquery': 'https://cdnjs.cloudflare.com/ajax/libs/jquery/3.7.0/jquery.min', 'headroom-jquery': 'https://cdnjs.cloudflare.com/ajax/libs/headroom/0.12.0/jQuery.headroom.min', @@ -75,61 +74,82 @@ $(document).ready(function() { //////////////////////////////////////////////////////////////////////////////// require(['jquery'], function($) { +let timer = 0; var isExpanded = true; -$(document).on("click", ".docstring header", function () { - let articleToggleTitle = "Expand docstring"; +$(document).on( + "click", + ".docstring .docstring-article-toggle-button", + function () { + let articleToggleTitle = "Expand docstring"; + const parent = $(this).parent(); + + debounce(() => { + if (parent.siblings("section").is(":visible")) { + parent + .find("a.docstring-article-toggle-button") + .removeClass("fa-chevron-down") + .addClass("fa-chevron-right"); + } else { + parent + .find("a.docstring-article-toggle-button") + .removeClass("fa-chevron-right") + .addClass("fa-chevron-down"); - if ($(this).siblings("section").is(":visible")) { - $(this) - .find(".docstring-article-toggle-button") - .removeClass("fa-chevron-down") - .addClass("fa-chevron-right"); - } else { - $(this) - .find(".docstring-article-toggle-button") - .removeClass("fa-chevron-right") - .addClass("fa-chevron-down"); + articleToggleTitle = "Collapse docstring"; + } - articleToggleTitle = "Collapse docstring"; + parent + .children(".docstring-article-toggle-button") + .prop("title", articleToggleTitle); + parent.siblings("section").slideToggle(); + }); } +); - $(this) - .find(".docstring-article-toggle-button") - .prop("title", articleToggleTitle); - $(this).siblings("section").slideToggle(); -}); - -$(document).on("click", ".docs-article-toggle-button", function () { +$(document).on("click", ".docs-article-toggle-button", function (event) { let articleToggleTitle = "Expand docstring"; let navArticleToggleTitle = "Expand all docstrings"; + let animationSpeed = event.noToggleAnimation ? 0 : 400; - if (isExpanded) { - $(this).removeClass("fa-chevron-up").addClass("fa-chevron-down"); - $(".docstring-article-toggle-button") - .removeClass("fa-chevron-down") - .addClass("fa-chevron-right"); + debounce(() => { + if (isExpanded) { + $(this).removeClass("fa-chevron-up").addClass("fa-chevron-down"); + $("a.docstring-article-toggle-button") + .removeClass("fa-chevron-down") + .addClass("fa-chevron-right"); - isExpanded = false; + isExpanded = false; - $(".docstring section").slideUp(); - } else { - $(this).removeClass("fa-chevron-down").addClass("fa-chevron-up"); - $(".docstring-article-toggle-button") - .removeClass("fa-chevron-right") - .addClass("fa-chevron-down"); + $(".docstring section").slideUp(animationSpeed); + } else { + $(this).removeClass("fa-chevron-down").addClass("fa-chevron-up"); + $("a.docstring-article-toggle-button") + .removeClass("fa-chevron-right") + .addClass("fa-chevron-down"); - isExpanded = true; - articleToggleTitle = "Collapse docstring"; - navArticleToggleTitle = "Collapse all docstrings"; + isExpanded = true; + articleToggleTitle = "Collapse docstring"; + navArticleToggleTitle = "Collapse all docstrings"; - $(".docstring section").slideDown(); - } + $(".docstring section").slideDown(animationSpeed); + } - $(this).prop("title", navArticleToggleTitle); - $(".docstring-article-toggle-button").prop("title", articleToggleTitle); + $(this).prop("title", navArticleToggleTitle); + $(".docstring-article-toggle-button").prop("title", articleToggleTitle); + }); }); +function debounce(callback, timeout = 300) { + if (Date.now() - timer > timeout) { + callback(); + } + + clearTimeout(timer); + + timer = Date.now(); +} + }) //////////////////////////////////////////////////////////////////////////////// require([], function() { @@ -209,392 +229,576 @@ $(document).ready(function () { }) //////////////////////////////////////////////////////////////////////////////// -require(['jquery', 'minisearch'], function($, minisearch) { - -// In general, most search related things will have "search" as a prefix. -// To get an in-depth about the thought process you can refer: https://hetarth02.hashnode.dev/series/gsoc +require(['jquery'], function($) { -let results = []; -let timer = undefined; +$(document).ready(function () { + let meta = $("div[data-docstringscollapsed]").data(); -let data = documenterSearchIndex["docs"].map((x, key) => { - x["id"] = key; // minisearch requires a unique for each object - return x; + if (meta?.docstringscollapsed) { + $("#documenter-article-toggle-button").trigger({ + type: "click", + noToggleAnimation: true, + }); + } }); -// list below is the lunr 2.1.3 list minus the intersect with names(Base) -// (all, any, get, in, is, only, which) and (do, else, for, let, where, while, with) -// ideally we'd just filter the original list but it's not available as a variable -const stopWords = new Set([ - "a", - "able", - "about", - "across", - "after", - "almost", - "also", - "am", - "among", - "an", - "and", - "are", - "as", - "at", - "be", - "because", - "been", - "but", - "by", - "can", - "cannot", - "could", - "dear", - "did", - "does", - "either", - "ever", - "every", - "from", - "got", - "had", - "has", - "have", - "he", - "her", - "hers", - "him", - "his", - "how", - "however", - "i", - "if", - "into", - "it", - "its", - "just", - "least", - "like", - "likely", - "may", - "me", - "might", - "most", - "must", - "my", - "neither", - "no", - "nor", - "not", - "of", - "off", - "often", - "on", - "or", - "other", - "our", - "own", - "rather", - "said", - "say", - "says", - "she", - "should", - "since", - "so", - "some", - "than", - "that", - "the", - "their", - "them", - "then", - "there", - "these", - "they", - "this", - "tis", - "to", - "too", - "twas", - "us", - "wants", - "was", - "we", - "were", - "what", - "when", - "who", - "whom", - "why", - "will", - "would", - "yet", - "you", - "your", -]); - -let index = new minisearch({ - fields: ["title", "text"], // fields to index for full-text search - storeFields: ["location", "title", "text", "category", "page"], // fields to return with search results - processTerm: (term) => { - let word = stopWords.has(term) ? null : term; - if (word) { - // custom trimmer that doesn't strip @ and !, which are used in julia macro and function names - word = word - .replace(/^[^a-zA-Z0-9@!]+/, "") - .replace(/[^a-zA-Z0-9@!]+$/, ""); - } +}) +//////////////////////////////////////////////////////////////////////////////// +require(['jquery'], function($) { - return word ?? null; - }, - // add . as a separator, because otherwise "title": "Documenter.Anchors.add!", would not find anything if searching for "add!", only for the entire qualification - tokenize: (string) => string.split(/[\s\-\.]+/), - // options which will be applied during the search - searchOptions: { - boost: { title: 100 }, - fuzzy: 2, +/* +To get an in-depth about the thought process you can refer: https://hetarth02.hashnode.dev/series/gsoc + +PSEUDOCODE: + +Searching happens automatically as the user types or adjusts the selected filters. +To preserve responsiveness, as much as possible of the slow parts of the search are done +in a web worker. Searching and result generation are done in the worker, and filtering and +DOM updates are done in the main thread. The filters are in the main thread as they should +be very quick to apply. This lets filters be changed without re-searching with minisearch +(which is possible even if filtering is on the worker thread) and also lets filters be +changed _while_ the worker is searching and without message passing (neither of which are +possible if filtering is on the worker thread) + +SEARCH WORKER: + +Import minisearch + +Build index + +On message from main thread + run search + find the first 200 unique results from each category, and compute their divs for display + note that this is necessary and sufficient information for the main thread to find the + first 200 unique results from any given filter set + post results to main thread + +MAIN: + +Launch worker + +Declare nonconstant globals (worker_is_running, last_search_text, unfiltered_results) + +On text update + if worker is not running, launch_search() + +launch_search + set worker_is_running to true, set last_search_text to the search text + post the search query to worker + +on message from worker + if last_search_text is not the same as the text in the search field, + the latest search result is not reflective of the latest search query, so update again + launch_search() + otherwise + set worker_is_running to false + + regardless, display the new search results to the user + save the unfiltered_results as a global + update_search() + +on filter click + adjust the filter selection + update_search() + +update_search + apply search filters by looping through the unfiltered_results and finding the first 200 + unique results that match the filters + + Update the DOM +*/ + +/////// SEARCH WORKER /////// + +function worker_function(documenterSearchIndex, documenterBaseURL, filters) { + importScripts( + "https://cdn.jsdelivr.net/npm/minisearch@6.1.0/dist/umd/index.min.js" + ); + + let data = documenterSearchIndex.map((x, key) => { + x["id"] = key; // minisearch requires a unique for each object + return x; + }); + + // list below is the lunr 2.1.3 list minus the intersect with names(Base) + // (all, any, get, in, is, only, which) and (do, else, for, let, where, while, with) + // ideally we'd just filter the original list but it's not available as a variable + const stopWords = new Set([ + "a", + "able", + "about", + "across", + "after", + "almost", + "also", + "am", + "among", + "an", + "and", + "are", + "as", + "at", + "be", + "because", + "been", + "but", + "by", + "can", + "cannot", + "could", + "dear", + "did", + "does", + "either", + "ever", + "every", + "from", + "got", + "had", + "has", + "have", + "he", + "her", + "hers", + "him", + "his", + "how", + "however", + "i", + "if", + "into", + "it", + "its", + "just", + "least", + "like", + "likely", + "may", + "me", + "might", + "most", + "must", + "my", + "neither", + "no", + "nor", + "not", + "of", + "off", + "often", + "on", + "or", + "other", + "our", + "own", + "rather", + "said", + "say", + "says", + "she", + "should", + "since", + "so", + "some", + "than", + "that", + "the", + "their", + "them", + "then", + "there", + "these", + "they", + "this", + "tis", + "to", + "too", + "twas", + "us", + "wants", + "was", + "we", + "were", + "what", + "when", + "who", + "whom", + "why", + "will", + "would", + "yet", + "you", + "your", + ]); + + let index = new MiniSearch({ + fields: ["title", "text"], // fields to index for full-text search + storeFields: ["location", "title", "text", "category", "page"], // fields to return with results processTerm: (term) => { let word = stopWords.has(term) ? null : term; if (word) { + // custom trimmer that doesn't strip @ and !, which are used in julia macro and function names word = word .replace(/^[^a-zA-Z0-9@!]+/, "") .replace(/[^a-zA-Z0-9@!]+$/, ""); + + word = word.toLowerCase(); } return word ?? null; }, + // add . as a separator, because otherwise "title": "Documenter.Anchors.add!", would not + // find anything if searching for "add!", only for the entire qualification tokenize: (string) => string.split(/[\s\-\.]+/), - }, -}); + // options which will be applied during the search + searchOptions: { + prefix: true, + boost: { title: 100 }, + fuzzy: 2, + }, + }); -index.addAll(data); + index.addAll(data); + + /** + * Used to map characters to HTML entities. + * Refer: https://github.com/lodash/lodash/blob/main/src/escape.ts + */ + const htmlEscapes = { + "&": "&", + "<": "<", + ">": ">", + '"': """, + "'": "'", + }; + + /** + * Used to match HTML entities and HTML characters. + * Refer: https://github.com/lodash/lodash/blob/main/src/escape.ts + */ + const reUnescapedHtml = /[&<>"']/g; + const reHasUnescapedHtml = RegExp(reUnescapedHtml.source); + + /** + * Escape function from lodash + * Refer: https://github.com/lodash/lodash/blob/main/src/escape.ts + */ + function escape(string) { + return string && reHasUnescapedHtml.test(string) + ? string.replace(reUnescapedHtml, (chr) => htmlEscapes[chr]) + : string || ""; + } -let filters = [...new Set(data.map((x) => x.category))]; -var modal_filters = make_modal_body_filters(filters); -var filter_results = []; + /** + * RegX escape function from MDN + * Refer: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ + function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + } -$(document).on("keyup", ".documenter-search-input", function (event) { - // Adding a debounce to prevent disruptions from super-speed typing! - debounce(() => update_search(filter_results), 300); -}); + /** + * Make the result component given a minisearch result data object and the value + * of the search input as queryString. To view the result object structure, refer: + * https://lucaong.github.io/minisearch/modules/_minisearch_.html#searchresult + * + * @param {object} result + * @param {string} querystring + * @returns string + */ + function make_search_result(result, querystring) { + let search_divider = `
`; + let display_link = + result.location.slice(Math.max(0), Math.min(50, result.location.length)) + + (result.location.length > 30 ? "..." : ""); // To cut-off the link because it messes with the overflow of the whole div -$(document).on("click", ".search-filter", function () { - if ($(this).hasClass("search-filter-selected")) { - $(this).removeClass("search-filter-selected"); - } else { - $(this).addClass("search-filter-selected"); + if (result.page !== "") { + display_link += ` (${result.page})`; + } + searchstring = escapeRegExp(querystring); + let textindex = new RegExp(`${searchstring}`, "i").exec(result.text); + let text = + textindex !== null + ? result.text.slice( + Math.max(textindex.index - 100, 0), + Math.min( + textindex.index + querystring.length + 100, + result.text.length + ) + ) + : ""; // cut-off text before and after from the match + + text = text.length ? escape(text) : ""; + + let display_result = text.length + ? "..." + + text.replace( + new RegExp(`${escape(searchstring)}`, "i"), // For first occurrence + '$&' + ) + + "..." + : ""; // highlights the match + + let in_code = false; + if (!["page", "section"].includes(result.category.toLowerCase())) { + in_code = true; + } + + // We encode the full url to escape some special characters which can lead to broken links + let result_div = ` + +
+
${escape(result.title)}
+
${result.category}
+
+

+ ${display_result} +

+
+ ${display_link} +
+
+ ${search_divider} + `; + + return result_div; } - // Adding a debounce to prevent disruptions from crazy clicking! - debounce(() => get_filters(), 300); -}); + self.onmessage = function (e) { + let query = e.data; + let results = index.search(query, { + filter: (result) => { + // Only return relevant results + return result.score >= 1; + }, + combineWith: "AND", + }); -/** - * A debounce function, takes a function and an optional timeout in milliseconds - * - * @function callback - * @param {number} timeout - */ -function debounce(callback, timeout = 300) { - clearTimeout(timer); - timer = setTimeout(callback, timeout); + // Pre-filter to deduplicate and limit to 200 per category to the extent + // possible without knowing what the filters are. + let filtered_results = []; + let counts = {}; + for (let filter of filters) { + counts[filter] = 0; + } + let present = {}; + + for (let result of results) { + cat = result.category; + cnt = counts[cat]; + if (cnt < 200) { + id = cat + "---" + result.location; + if (present[id]) { + continue; + } + present[id] = true; + filtered_results.push({ + location: result.location, + category: cat, + div: make_search_result(result, query), + }); + } + } + + postMessage(filtered_results); + }; } -/** - * Make/Update the search component - * - * @param {string[]} selected_filters - */ -function update_search(selected_filters = []) { - let initial_search_body = ` -
Type something to get started!
- `; +/////// SEARCH MAIN /////// + +function runSearchMainCode() { + // `worker = Threads.@spawn worker_function(documenterSearchIndex)`, but in JavaScript! + const filters = [ + ...new Set(documenterSearchIndex["docs"].map((x) => x.category)), + ]; + const worker_str = + "(" + + worker_function.toString() + + ")(" + + JSON.stringify(documenterSearchIndex["docs"]) + + "," + + JSON.stringify(documenterBaseURL) + + "," + + JSON.stringify(filters) + + ")"; + const worker_blob = new Blob([worker_str], { type: "text/javascript" }); + const worker = new Worker(URL.createObjectURL(worker_blob)); + + // Whether the worker is currently handling a search. This is a boolean + // as the worker only ever handles 1 or 0 searches at a time. + var worker_is_running = false; + + // The last search text that was sent to the worker. This is used to determine + // if the worker should be launched again when it reports back results. + var last_search_text = ""; + + // The results of the last search. This, in combination with the state of the filters + // in the DOM, is used compute the results to display on calls to update_search. + var unfiltered_results = []; + + // Which filter is currently selected + var selected_filter = ""; + + $(document).on("input", ".documenter-search-input", function (event) { + if (!worker_is_running) { + launch_search(); + } + }); - let querystring = $(".documenter-search-input").val(); + function launch_search() { + worker_is_running = true; + last_search_text = $(".documenter-search-input").val(); + worker.postMessage(last_search_text); + } - if (querystring.trim()) { - results = index.search(querystring, { - filter: (result) => { - // Filtering results - if (selected_filters.length === 0) { - return result.score >= 1; - } else { - return ( - result.score >= 1 && selected_filters.includes(result.category) - ); - } - }, - }); + worker.onmessage = function (e) { + if (last_search_text !== $(".documenter-search-input").val()) { + launch_search(); + } else { + worker_is_running = false; + } - let search_result_container = ``; - let search_divider = `
`; + unfiltered_results = e.data; + update_search(); + }; + + $(document).on("click", ".search-filter", function () { + if ($(this).hasClass("search-filter-selected")) { + selected_filter = ""; + } else { + selected_filter = $(this).text().toLowerCase(); + } + + // This updates search results and toggles classes for UI: + update_search(); + }); + + /** + * Make/Update the search component + */ + function update_search() { + let querystring = $(".documenter-search-input").val(); + + if (querystring.trim()) { + if (selected_filter == "") { + results = unfiltered_results; + } else { + results = unfiltered_results.filter((result) => { + return selected_filter == result.category.toLowerCase(); + }); + } + + let search_result_container = ``; + let modal_filters = make_modal_body_filters(); + let search_divider = `
`; - if (results.length) { - let links = []; - let count = 0; - let search_results = ""; + if (results.length) { + let links = []; + let count = 0; + let search_results = ""; - results.forEach(function (result) { - if (result.location) { - // Checking for duplication of results for the same page - if (!links.includes(result.location)) { - search_results += make_search_result(result, querystring); + for (var i = 0, n = results.length; i < n && count < 200; ++i) { + let result = results[i]; + if (result.location && !links.includes(result.location)) { + search_results += result.div; count++; + links.push(result.location); } - - links.push(result.location); } - }); - - let result_count = `
${count} result(s)
`; - search_result_container = ` + if (count == 1) { + count_str = "1 result"; + } else if (count == 200) { + count_str = "200+ results"; + } else { + count_str = count + " results"; + } + let result_count = `
${count_str}
`; + + search_result_container = ` +
+ ${modal_filters} + ${search_divider} + ${result_count} +
+ ${search_results} +
+
+ `; + } else { + search_result_container = `
${modal_filters} ${search_divider} - ${result_count} -
- ${search_results} -
-
+
0 result(s)
+ +
No result found!
`; - } else { - search_result_container = ` -
- ${modal_filters} - ${search_divider} -
0 result(s)
-
-
No result found!
- `; - } + } - if ($(".search-modal-card-body").hasClass("is-justify-content-center")) { - $(".search-modal-card-body").removeClass("is-justify-content-center"); - } + if ($(".search-modal-card-body").hasClass("is-justify-content-center")) { + $(".search-modal-card-body").removeClass("is-justify-content-center"); + } - $(".search-modal-card-body").html(search_result_container); - } else { - filter_results = []; - modal_filters = make_modal_body_filters(filters, filter_results); + $(".search-modal-card-body").html(search_result_container); + } else { + if (!$(".search-modal-card-body").hasClass("is-justify-content-center")) { + $(".search-modal-card-body").addClass("is-justify-content-center"); + } - if (!$(".search-modal-card-body").hasClass("is-justify-content-center")) { - $(".search-modal-card-body").addClass("is-justify-content-center"); + $(".search-modal-card-body").html(` +
Type something to get started!
+ `); } - - $(".search-modal-card-body").html(initial_search_body); } -} - -/** - * Make the modal filter html - * - * @param {string[]} filters - * @param {string[]} selected_filters - * @returns string - */ -function make_modal_body_filters(filters, selected_filters = []) { - let str = ``; - - filters.forEach((val) => { - if (selected_filters.includes(val)) { - str += `${val}`; - } else { - str += `${val}`; - } - }); - - let filter_html = ` -
- Filters: - ${str} -
- `; - return filter_html; -} - -/** - * Make the result component given a minisearch result data object and the value of the search input as queryString. - * To view the result object structure, refer: https://lucaong.github.io/minisearch/modules/_minisearch_.html#searchresult - * - * @param {object} result - * @param {string} querystring - * @returns string - */ -function make_search_result(result, querystring) { - let search_divider = `
`; - let display_link = - result.location.slice(Math.max(0), Math.min(50, result.location.length)) + - (result.location.length > 30 ? "..." : ""); // To cut-off the link because it messes with the overflow of the whole div - - if (result.page !== "") { - display_link += ` (${result.page})`; + /** + * Make the modal filter html + * + * @returns string + */ + function make_modal_body_filters() { + let str = filters + .map((val) => { + if (selected_filter == val.toLowerCase()) { + return `${val}`; + } else { + return `${val}`; + } + }) + .join(""); + + return ` +
+ Filters: + ${str} +
`; } +} - let textindex = new RegExp(`\\b${querystring}\\b`, "i").exec(result.text); - let text = - textindex !== null - ? result.text.slice( - Math.max(textindex.index - 100, 0), - Math.min( - textindex.index + querystring.length + 100, - result.text.length - ) - ) - : ""; // cut-off text before and after from the match - - let display_result = text.length - ? "..." + - text.replace( - new RegExp(`\\b${querystring}\\b`, "i"), // For first occurrence - '$&' - ) + - "..." - : ""; // highlights the match - - let in_code = false; - if (!["page", "section"].includes(result.category.toLowerCase())) { - in_code = true; +function waitUntilSearchIndexAvailable() { + // It is possible that the documenter.js script runs before the page + // has finished loading and documenterSearchIndex gets defined. + // So we need to wait until the search index actually loads before setting + // up all the search-related stuff. + if (typeof documenterSearchIndex !== "undefined") { + runSearchMainCode(); + } else { + console.warn("Search Index not available, waiting"); + setTimeout(waitUntilSearchIndexAvailable, 1000); } - - // We encode the full url to escape some special characters which can lead to broken links - let result_div = ` - -
-
${result.title}
-
${result.category}
-
-

- ${display_result} -

-
- ${display_link} -
-
- ${search_divider} - `; - - return result_div; } -/** - * Get selected filters, remake the filter html and lastly update the search modal - */ -function get_filters() { - let ele = $(".search-filters .search-filter-selected").get(); - filter_results = ele.map((x) => $(x).text().toLowerCase()); - modal_filters = make_modal_body_filters(filters, filter_results); - update_search(filter_results); -} +// The actual entry point to the search code +waitUntilSearchIndexAvailable(); }) //////////////////////////////////////////////////////////////////////////////// @@ -620,103 +824,107 @@ $(document).ready(function () { //////////////////////////////////////////////////////////////////////////////// require(['jquery'], function($) { -let search_modal_header = ` - -`; - -let initial_search_body = ` -
Type something to get started!
-`; - -let search_modal_footer = ` - -`; - -$(document.body).append( - ` -