diff --git a/Project.toml b/Project.toml index 331ef6cd..54f7baab 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "PSIS" uuid = "ce719bf2-d5d0-4fb9-925d-10a81b42ad04" authors = ["Seth Axen and contributors"] -version = "0.7.0" +version = "0.7.1" [deps] LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" diff --git a/README.md b/README.md index daebe605..0e7a5794 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,6 @@ # PSIS -[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://psis.julia.arviz.org/stable) -[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://psis.julia.arviz.org/dev) +[![Docs](https://img.shields.io/badge/docs-ArviZ-blue.svg)](https://julia.arviz.org/PSIS) [![Build Status](https://github.com/arviz-devs/PSIS.jl/workflows/CI/badge.svg)](https://github.com/arviz-devs/PSIS.jl/actions) [![Coverage](https://codecov.io/gh/arviz-devs/PSIS.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/PSIS.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) diff --git a/docs/src/index.md b/docs/src/index.md index 98335fd0..ac7db4da 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -4,11 +4,6 @@ CurrentModule = PSIS # PSIS -[![Build Status](https://github.com/arviz-devs/PSIS.jl/workflows/CI/badge.svg)](https://github.com/arviz-devs/PSIS.jl/actions) -[![Coverage](https://codecov.io/gh/arviz-devs/PSIS.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/PSIS.jl) -[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac) -[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) - PSIS.jl implements the Pareto smoothed importance sampling (PSIS) algorithm from [^VehtariSimpson2021]. Given a set of importance weights used in some estimator, PSIS both improves the reliability of the estimates by smoothing the importance weights and acts as a diagnostic of the reliability of the estimates.