-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhard_cmeans.cpp
199 lines (171 loc) · 4.21 KB
/
hard_cmeans.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Made By: Parth Mudgal
#include "stdafx.h"
#include <vector>
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;
class hcm{
private:
const int cluster_count;
const int attribute_count;
int data_count;
vector< vector<int> > matrix;
vector< vector<float> > data;
vector< vector<float> > center;
vector< vector<int> > temp_matrix;
ostream& out;
public:
void init_matrix(){
matrix.resize(cluster_count);
for(int i=0;i<cluster_count;i++){
matrix[i].assign(data_count, 0);
}
//matrix[0].assign(data_count, 1);
}
hcm(int c_count, int a_count, ostream& _o):cluster_count(c_count),
attribute_count(a_count),
data_count(5),
out(_o)
{
init_matrix();
}
void read_data(istream& in){
while(!in.eof()){
vector<float> row;
row.resize(attribute_count);
for(int i=0;i<attribute_count;i++){
in>>row[i];
}
data.push_back(row);
}
data_count = data.size();
init_matrix();
for(int i=0;i<data_count;i++){
matrix[i%cluster_count][i]=1;
}
}
void calculate_center(){
center.clear();
for(int i=0;i<cluster_count;i++){
vector<float> acenter;
acenter.resize(attribute_count);
for(int j=0;j<attribute_count;j++){
float sum=0;
int div=0;
for(int k=0;k<data_count;k++){
sum += matrix[i][k]*data[k][j];
div += matrix[i][k];
}
acenter[j] = sum/div;
}
center.push_back(acenter);
}
}
void copy_matrix(){
temp_matrix.clear();
temp_matrix.resize(matrix.size());
for(int i=0;i<matrix.size();i++){
temp_matrix[i].clear();
temp_matrix[i].resize(matrix[i].size());
for(int j=0;j<matrix[i].size();j++){
temp_matrix[i][j] = matrix[i][j];
}
}
}
bool is_equal(vector< vector<int> >& m1, vector< vector<int> >& m2){
if(m1.size() != m2.size())return false;
for(int i=0;i<m1.size();i++){
if(m1[i].size() != m2[i].size())return false;
for(int j=0;j<m1[i].size();j++){
if(m1[i][j] != m2[i][j]){
return false;
}
}
}
return true;
}
void process(){
temp_matrix.clear();
int count=0;
calculate_center();
while(!is_equal(matrix, temp_matrix) && count<10){
print_matrix();
copy_matrix();
for(int i=0;i<data_count;i++){
vector<float> distance;
distance.resize(cluster_count);
float sum_squared=0;
float min_sum = 9999;
int min_index = 0;
int old_index = 0;
for(int j=0;j<cluster_count;j++){
if(matrix[j][i] == 1)old_index = j;
for(int k=0;k<attribute_count;k++){
sum_squared += pow((center[j][k] - data[i][k]), 2);
}
sum_squared = pow(static_cast<double>(sum_squared), static_cast<double>(0.5));
if(sum_squared < min_sum){
min_index = j;
min_sum = sum_squared;
}
}
matrix[old_index][i] = 0;
matrix[min_index][i] = 1;
}
calculate_center();
count++;
}
}
template<typename T>
void print2d(vector<vector<T>> m, ostream& out){
for(int i=0;i<m.size();i++){
for(int j=0;j<m[i].size();j++){
out<<m[i][j]<<" ";
}
cout<<endl;
}
}
void print_matrix(){
int x = cluster_count*4 + cluster_count + 4;
out<<"|";
for(int i=0;i<x;i++){
out<<"-";
}
out<<"|";
out<<endl;
out<<"|";
out<<" |";
for(int i=0;i<cluster_count;i++){
out<<" C"<<(i+1)<<" |";
}
out<<endl;
for(int i=0;i<matrix[0].size();i++){
out<<"| X"<<(i+1)<<" |";
for(int j=0;j<matrix.size();j++){
out<<" "<<matrix[j][i]<<" |";
}
out<<endl;
}
out<<"|";
for(int i=0;i<x;i++){
out<<"-";
}
out<<"|";
out<<endl;
}
};
int main(int argc, char *argv[])
{
ofstream out("test2.txt");
ifstream in("input.txt");
int data_count, cluster_count;
in>>data_count;
in>>cluster_count;
hcm test(cluster_count, data_count, out);
test.read_data(in);
test.process();
test.print_matrix();
out.close();
return 0;
}