-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathneuralNetwork.py
71 lines (56 loc) · 2.64 KB
/
neuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
import pickle
import numpy as np
with open('data/data.pickle', 'rb') as f:
tr_data, tr_label, tst_data, tst_label = pickle.load(f)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 2
n_batches = 10
x = tf.placeholder('float', [None, len(tr_data[0])])
y = tf.placeholder('float')
# Neural Network Model
def neural_network(data):
hd_layer1 = {'weights': tf.Variable(tf.random_normal([len(tr_data[0]), n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hd_layer2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hd_layer3 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
# (input_data*weight) + biases
l1 = tf.add(tf.matmul(data,hd_layer1['weights']),hd_layer1['biases'])
l1 = tf.nn.relu(l1) # activation function - threshold function
l2 = tf.add(tf.matmul(l1,hd_layer2['weights']),hd_layer2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hd_layer3['weights']),hd_layer3['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output['weights']) + output['biases']
return output
# Code to train the neural netowrk
def train_neural_network(x):
# gives predicted value based on input data
prediction = neural_network(x)
# gives cost function (difference) between predicted and actual output
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
# Stochastic gradient descent
optimizer = tf.train.AdamOptimizer().minimize(cost)
# no. of cycles of feed forward + backprop
hm_epochs= 10
# Run tensorFlow
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(0,len(tr_data),n_batches):
x_batch = np.array(tr_data[i:i+100])
y_batch = np.array(tr_label[i:i+100])
_, c= sess.run([optimizer,cost],feed_dict={x:x_batch,y:y_batch})
epoch_loss += c
print('Epoch: {} completed out of: {} loss: {}'.format(epoch,hm_epochs,epoch_loss))
correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print(accuracy.eval({x:tst_data,y:tst_label}))
train_neural_network(x)