-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhsv_diamond.py
153 lines (118 loc) · 4.11 KB
/
hsv_diamond.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import cv2
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import argparse
import utils
from os import listdir
from os.path import isfile, join
def featureMatch(img1, img2):
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# Apply ratio test
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append([m])
print("good,len", len(good))
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None, flags=2)
plt.imshow(img3), plt.show()
# fetch training data
training_path = 'data/master'
only_files = [f for f in listdir(training_path) if isfile(join(training_path, f))]
for image in only_files:
# extract full image path
image_path = join(training_path, image)
print("image_path", image_path)
mat = cv2.imread(image_path)
# convert image to HSV
hsv = cv2.cvtColor(mat, cv2.COLOR_BGR2HSV)
## mask of green (36,0,0) ~ (70, 255,255)
# lower_green = np.array([12, 30, 0])
# upper_green = np.array([30, 50, 100])
'''
color = 25
sensitivity = 15
lower_green = np.array([color - sensitivity, 25, 0])
upper_green = np.array([color + sensitivity, 100, 255])
mask = cv2.inRange(hsv, lower_green, upper_green)
'''
color = 25
sensitivity = 15
lower_green = np.array([color - sensitivity, 25, 0])
upper_green = np.array([color + sensitivity, 100, 180])
mask = cv2.inRange(hsv, lower_green, upper_green)
## slice the green
imask = mask > 0
green = np.zeros_like(mat, np.uint8)
green[imask] = mat[imask]
# k mean skleanr
'''
# reshape the image to be a list of pixels
reshaped_hsv = green.reshape((mat.shape[0] * mat.shape[1], 3))
# cluster the pixel intensities
clt = KMeans(init='k-means++', n_clusters=10, n_init=10)
clt.fit(reshaped_hsv)
# build a histogram of clusters and then create a figure
# representing the number of pixels labeled to each color
hist = utils.centroid_histogram(clt)
bar = utils.plot_colors(hist, clt.cluster_centers_)
cv2.imshow("bar", bar)
'''
Z = green.reshape((-1, 3))
# convert to np.float32
Z = np.float32(Z)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 8
ret, label, center = cv2.kmeans(Z, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
print("label", label)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((green.shape))
cv2.imshow('res2', res2)
other = cv2.add(mat, green, None, mask);
concatGreen = np.concatenate((mat, other), axis=1)
# con cat = np.concatenate((concatGreen, hsv), axis=1)
cv2.namedWindow("green", cv2.WINDOW_NORMAL)
cv2.resizeWindow("green", 1000, 600)
cv2.imshow("green", concatGreen)
cv2.waitKey(0)
'''
histr = cv2.calcHist([hsv], [0], None, [256], [0, 256])
plt.title("histogram")
plt.plot(histr, label=image)
'''
cv2.destroyAllWindows()
'''
plt.legend()
plt.xlim([0, 256])
plt.show()
'''
'''
# reshape the image to be a list of pixels
reshaped_hsv = hsv.reshape((image.shape[0] * image.shape[1], 3))
# cluster the pixel intensities
clt = KMeans(init='k-means++', n_clusters=20, n_init=10)
clt.fit(reshaped_hsv)
# build a histogram of clusters and then create a figure
# representing the number of pixels labeled to each color
hist = utils.centroid_histogram(clt)
bar = utils.plot_colors(hist, clt.cluster_centers_)
cv2.imshow("bar", bar)
# concatenate image to display
concat = np.concatenate((image, hsv), axis=1)
cv2.namedWindow("hsv", cv2.WINDOW_NORMAL)
cv2.resizeWindow("hsv", 1000,600)
cv2.imshow("hsv", concat)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''