-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
404 lines (320 loc) · 14.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#adapted from https://github.com/xjtushujun/meta-weight-net
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
import matplotlib.pyplot as plt
import sklearn.metrics as sm
import pandas as pd
import sklearn.metrics as sm
import random
import numpy as np
from wideresnet import WideResNet, VNet
from resnet import ResNet32,VNet
from load_corrupted_data import CIFAR10, CIFAR100
parser = argparse.ArgumentParser(description='PyTorch WideResNet Training')
parser.add_argument('--dataset', default='cifar10', type=str,
help='dataset (cifar10 [default] or cifar100)')
parser.add_argument('--corruption_prob', type=float, default=0.4,
help='label noise')
parser.add_argument('--corruption_type', '-ctype', type=str, default='unif',
help='Type of corruption ("unif" or "flip" or "flip2").')
parser.add_argument('--num_meta', type=int, default=1000)
parser.add_argument('--epochs', default=120, type=int,
help='number of total epochs to run')
parser.add_argument('--iters', default=60000, type=int,
help='number of total iters to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=10, type=int,
help='mini-batch size (default: 100)')
parser.add_argument('--lr', '--learning-rate', default=1e-1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--layers', default=28, type=int,
help='total number of layers (default: 28)')
parser.add_argument('--widen-factor', default=10, type=int,
help='widen factor (default: 10)')
parser.add_argument('--droprate', default=0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--net', default='default', type=str,
help='name of experiment')
parser.add_argument('--meta_loss', default='mae', type=str,
help='meta loss function either cross or mae')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--noisy', type=int, default=1, help='1 if meta dataset is also noisy. otherwise 0')
parser.add_argument('--prefetch', type=int, default=0, help='Pre-fetching threads.')
parser.set_defaults(augment=True)
best_prec1 = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main():
global args, best_prec1
args = parser.parse_args()
torch.manual_seed(args.seed)
model_type = args.net
assert model_type in {'default', 'wide',
'res'}, "Oh no! Model type assertion failed!"
if args.net == 'default':
if args.corruption_type in {'unif', 'flip'}:
model_type = 'wide'
else:
model_type = 'res'
args.model_type = model_type
print()
print(args)
train_loader, train_meta_loader, test_loader = build_dataset()
# create model
model = build_model()
optimizer_model = torch.optim.SGD(model.params(), args.lr,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)
vnet = VNet(1, 100, 1).to(device)
optimizer_vnet = torch.optim.SGD(vnet.params(), 1e-3,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)
cudnn.benchmark = True
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().to(device)
model_loss = []
meta_model_loss = []
smoothing_alpha = 0.9
meta_l = 0
net_l = 0
accuracy_log = []
train_acc = []
for iters in range(args.iters):
adjust_learning_rate(optimizer_model, iters + 1)
model.train()
input, target = next(iter(train_loader))
input_var = to_var(input, requires_grad=False)
target_var = to_var(target, requires_grad=False)
meta_model = build_model()
meta_model.load_state_dict(model.state_dict())
#initial approximation
yhat = meta_model(input_var)
cost = F.cross_entropy(yhat, target_var, reduce=False)
cost_v = torch.reshape(cost, (len(cost), 1))
v_lambda = vnet(cost_v.data)
norm_c = torch.sum(v_lambda)
if norm_c != 0:
v_lambda_norm = v_lambda / norm_c
else:
v_lambda_norm = v_lambda
loss_meta = torch.sum(cost_v * v_lambda_norm)
meta_model.zero_grad()
grads = torch.autograd.grad(
loss_meta, (meta_model.params()), create_graph=True)
if args.model_type =='wide':
meta_lr = args.lr * ((0.1 ** int(iters >= 18000)) * (0.1 ** int(iters >= 19000))) # For WRN-28-10
else:
meta_lr = args.lr * ((0.1 ** int(iters >= 20000)) * (0.1 ** int(iters >= 25000))) # For ResNet32
meta_model.update_params(lr_inner=meta_lr,source_params=grads)
del grads
##metaweight net loss
input_validation, target_validation = next(iter(train_meta_loader))
input_validation_var = to_var(input_validation, requires_grad=False)
target_validation_var = to_var(target_validation.type(torch.LongTensor), requires_grad=False)
yhat_meta = meta_model(input_validation_var)
if args.meta_loss == 'mae':
yhat_meta_1 = F.softmax(yhat_meta, dim=-1)
first_index = to_var(torch.arange(yhat_meta.size(0)).type(
torch.LongTensor), requires_grad=False)
yhat_meta_1 = yhat_meta_1[first_index, target_validation_var]
loss_vnet = 2*torch.mean(1. - yhat_meta_1)
else:
loss_vnet = F.cross_entropy(yhat_meta, target_validation_var)
prec_meta = accuracy(yhat_meta.data, target_validation_var.data, topk=(1,))[0]
optimizer_vnet.zero_grad()
loss_vnet.backward()
optimizer_vnet.step()
yhat_final = model(input_var)
cost_w = F.cross_entropy(yhat_final, target_var, reduce=False)
cost_v = torch.reshape(cost_w, (len(cost_w), 1))
prec_train = accuracy(yhat_final.data, target_var.data, topk=(1,))[0]
with torch.no_grad():
w_new = vnet(cost_v)
norm_v = torch.sum(w_new)
if norm_v != 0:
w_v = w_new / norm_v
else:
w_v = w_new
loss = torch.sum(cost_v * w_v)
optimizer_model.zero_grad()
loss.backward()
optimizer_model.step()
meta_l = smoothing_alpha * meta_l + (1 - smoothing_alpha) * loss_vnet.item()
meta_model_loss.append(meta_l / (1 - smoothing_alpha ** (iters + 1)))
net_l = smoothing_alpha * net_l + (1 - smoothing_alpha) * loss.item()
model_loss.append(net_l / (1 - smoothing_alpha ** (iters + 1)))
if (iters + 1) % 100 == 0:
print('Epoch: [%d/%d]\t'
'Iters: [%d/%d]\t'
'Loss: %.4f\t'
'MetaLoss:%.4f\t'
'Prec@1 %.2f\t'
'Prec_meta@1 %.2f' % (
(iters + 1) // 500 + 1, args.epochs, iters + 1, args.iters, model_loss[iters],
meta_model_loss[iters], prec_train, prec_meta))
losses_test = AverageMeter()
top1_test = AverageMeter()
model.eval()
for i, (input_test, target_test) in enumerate(test_loader):
input_test_var = to_var(input_test, requires_grad=False)
target_test_var = to_var(target_test, requires_grad=False)
# compute output
with torch.no_grad():
output_test = model(input_test_var)
loss_test = criterion(output_test, target_test_var)
prec_test = accuracy(output_test.data, target_test_var.data, topk=(1,))[0]
losses_test.update(loss_test.data.item(), input_test_var.size(0))
top1_test.update(prec_test.item(), input_test_var.size(0))
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1_test))
accuracy_log.append(np.array([iters, top1_test.avg])[None])
train_acc.append(np.array([iters, prec_train])[None])
if top1_test.avg>best_prec1:
best_prec1 = max(top1_test.avg, best_prec1)
checkpoint(model,vnet, best_prec1, iters)
print('best_accuracy: ', best_prec1)
def checkpoint( model, vnet, prec, iters):
# Save checkpoint.
print('Saving.. Iters: ',iters)
state = {
'model': model,
'vnet': vnet,
'prec': prec
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/model.pt')
def build_dataset():
kwargs = {'num_workers': 0, 'pin_memory': True}
# assert (args.dataset == 'cifar10' or args.dataset == 'cifar100')
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
train_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
if args.dataset == 'cifar10':
if args.noisy==1:
train_data_meta = CIFAR10(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
else:
train_data_meta = CIFAR10(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=0,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
train_data = CIFAR10(
root='../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR10(root='../data', train=False, transform=test_transform, download=True)
elif args.dataset == 'cifar100':
if args.noisy == 1:
train_data_meta = CIFAR100(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
else:
train_data_meta = CIFAR100(
root='../data', train=True, meta=True, num_meta=args.num_meta, corruption_prob=0,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
train_data = CIFAR100(
root='../data', train=True, meta=False, num_meta=args.num_meta, corruption_prob=args.corruption_prob,
corruption_type=args.corruption_type, transform=train_transform, download=True, seed=args.seed)
test_data = CIFAR100(root='../data', train=False, transform=test_transform, download=True)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
train_meta_loader = torch.utils.data.DataLoader(
train_data_meta, batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
return train_loader, train_meta_loader, test_loader
def build_model():
if args.model_type =='wide':
model = WideResNet(args.layers, args.dataset == 'cifar10' and 10 or 100,
args.widen_factor, dropRate=args.droprate)
else:
model = ResNet32(args.dataset == 'cifar10' and 10 or 100)
# weights_init(model)
# print('Number of model parameters: {}'.format(
# sum([p.data.nelement() for p in model.params()])))
if torch.cuda.is_available():
model.cuda()
torch.backends.cudnn.benchmark = True
return model
def to_var(x, requires_grad=True):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def adjust_learning_rate(optimizer, iters):
#if args.corruption_type in {'unif', 'flip'}:
if args.model_type =='wide':
lr = args.lr * ((0.1 ** int(iters >= 18000)) * (0.1 ** int(iters >= 19000))) # For WRN-28-10
else:
lr = args.lr * ((0.1 ** int(iters >= 20000)) * (0.1 ** int(iters >= 25000))) # For ResNet32
# log to TensorBoard
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()