-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
141 lines (127 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import glob
import torch
import numpy as np
import torch.nn as nn
from dataset import data_generator
from torch.optim import Adam
import time
from utils import *
import argparse
from baseline import Baseline
from mnss import MNSS
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def test(model, negative_mapper, generator, params):
model.eval()
total_loss = 0.
batch_id = 0
start_ = time.time()
for (batch, negative_batch) in generator:
if batch is None:
print("Test Batch Dropped Due to Empty Skills/Majors!")
continue
with torch.no_grad():
loss = model(batch, negative_batch)
temp_loss = loss.detach().cpu().numpy()
total_loss += temp_loss
batch_id += 1
return total_loss/batch_id
def train(model, negative_mapper, train_generator, test_generator, params):
best_loss = None
for epoch in range(params.n_epoch):
start_ = time.time()
model.train()
total_loss = 0.
batch_id = 0
for (batch, negative_batch) in training_generator:
if batch is None:
print("Batch Dropped Due to Empty Skills/Majors!")
continue
if params.model in {'mnss'}:
beta = min((params.max_beta/params.anneal) *
max(epoch-params.warmup, 0), params.max_beta)
alpha = min((params.alpha/params.anneal) *
max(epoch-params.warmup, 0), params.alpha)
loss = model(batch, negative_batch, beta=beta, alpha=alpha)
else:
loss = model(batch, negative_batch)
optim.zero_grad()
loss.backward()
optim.step()
temp = loss.detach().cpu().numpy()
total_loss += temp
batch_id += 1
total_loss /= batch_id
test_loss = test(model, negative_mapper, test_generator, params)
print("Epoch: {}, Train Loss: {}, Test Loss: {}".format(
epoch, float(total_loss), float(test_loss)))
if best_loss is None or test_loss < best_loss:
best_loss = test_loss
if __name__ == '__main__':
# Parse Arguments
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=64,
help='')
parser.add_argument('--test_batch_size', type=int, default=64,
help='')
parser.add_argument('--negative_count', type=int, default=100,
help='')
parser.add_argument('--lr', type=float, default=1e-3,
help='')
parser.add_argument('--hidden_dim', type=int, default=1024,
help='')
parser.add_argument('--embed_dim', type=int, default=256,
help='')
parser.add_argument('--dropout', type=float, default=0.2,
help='')
parser.add_argument('--n_epoch', type=int, default=50,
help='')
parser.add_argument('--model', type=str, default='nemo',
help='') # 'mnss', 'nss', 'nemo'
parser.add_argument('--max_beta', type=float, default=0.1,
help='')
parser.add_argument('--alpha', type=float, default=0.1,
help='')
parser.add_argument('--warmup', type=int, default=10,
help='')
parser.add_argument('--anneal', type=int, default=20,
help='')
parser.add_argument('--pre_trained', action='store_true')
parser.add_argument('--use_loc_ind', action='store_true')
parser.add_argument('--gumbel', action='store_true')
parser.add_argument('--seed', type=int, default=222)
parser.add_argument('--dataset', type=str, default='demo')
params = parser.parse_args()
seedNum = params.seed
np.random.seed(seedNum)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seedNum)
np.random.seed(seedNum)
data_dir = 'data/'
##
negative_mapper = open_json(data_dir + 'demo_negative_mapper.json')
mapper = open_json(data_dir + 'demo_mapper.json')
data_path = data_dir + 'demo.json'
num_workers = 2
####
training_generator = data_generator(data_path, negative_count=params.negative_count, num_workers=num_workers,
start_=0., end_=0.8, negative_mapper=negative_mapper, batch_size=params.batch_size, drop_last=True, shuffle=True)
testing_generator = data_generator(data_path, negative_count=params.negative_count, num_workers=num_workers, start_=0.8,
end_=1., negative_mapper=negative_mapper, batch_size=params.test_batch_size, drop_last=True, shuffle=False)
E = params.embed_dim
embedding_dimensions = {'companies': E//2, 'locality': E//4, 'industry': E//4, 'degrees': E//4,
'schools': E//4, 'times': E//8, 'majors': E//4, 'intervals': E//8, 'occupations': E//2, 'skills': E}
if params.pre_trained:
embedding_dimensions['skills'] = 300
embedding_dimensions['occupations'] = 300
embedding_dimensions['companies'] = 300
if params.model in {'nss', 'nemo'}:
model = Baseline(mapper, embedding_dimensions, hidden_dim=params.hidden_dim, dropout=params.dropout,
pre_trained=params.pre_trained, use_loc_ind=params.use_loc_ind, data_dir=data_dir, model=params.model).to(device)
if params.model in {'mnss'}:
model = MNSS(mapper, embedding_dimensions, hidden_dim=params.hidden_dim,
dropout=params.dropout, pre_trained=params.pre_trained, use_loc_ind=params.use_loc_ind, data_dir=data_dir).to(device)
optim = Adam(model.parameters(), lr=params.lr)
# testing
train(model, negative_mapper, training_generator, testing_generator, params)