This is an official repository of the paper BOBCAT: Bilevel Optimization-Based Computerized Adaptive Testing to be presented at IJCAI 2021.
In this paper, we propose BOBCAT, a Bilevel Optimization-Based framework for CAT to directly learn a data-driven question selection algorithm from training data. We show that BOBCAT outperforms existing CAT methods (sometimes significantly) at reducing test length.
This repository uses the following packages in Python3.
torch==1.7.1
You can download the preprocessed datasets from Google Drive in /data/
folder. Preprocessing scirpts can be found in utils/
folder.
python train.py\
--dataset {eedi-1 or eedi-3 or assit2009 or junyi or ednet}
--model {base-sampling where base is binn/biirt and sampling is random/active/unbiased/biased}\
--n_query {1, 3, 5, or 10}
--cuda
Hyperparameter ranges are:
hyperparameters = [
[('dataset',), ['ednet', 'eedi-1', 'eedi-3', 'assist2009', 'junyi']],
[('model',), ['biirt-active', 'biirt-random', 'biirt-unbiased','biirt-biased', 'binn-active', 'binn-random', 'binn-unbiased','binn-biased']],
[('fold',), [ 1, 2, 3, 4, 5 ]],
[('hidden_dim'), [256]],
[('lr',), [ 1e-3 ]],
[('inner_lr',), [ 2e-1, 1e-1, 5e-2]],
[('meta_lr',), [ 1e-4 ]],
[('inner_loop',), [ 5 ]],
[('policy_lr',), [2e-3, 2e-4]],
[('n_query',), [1, 3, 5, 10]]
]
If you find this code useful in your research then please cite
@inproceedings{ghosh-bobcat,
title = {BOBCAT: Bilevel Optimization-Based Computerized Adaptive Testing},
author = {Ghosh, Aritra and Lan, Andrew},
booktitle = {Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, {IJCAI-21}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
editor = {Zhi-Hua Zhou},
pages = {2410--2417},
year = {2021},
month = {8},
note = {Main Track},
doi = {10.24963/ijcai.2021/332},
url = {https://doi.org/10.24963/ijcai.2021/332},
}
Contact: Aritra Ghosh ([email protected]).