-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_class.py
229 lines (183 loc) · 10 KB
/
training_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import tensorflow as tf
import keras
import numpy as np
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras.optimizers import SGD
from keras.models import Model
from keras.datasets import mnist
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from numpy import array,random
from keras.callbacks import CSVLogger
from keras.callbacks import TensorBoard
from dataset import load_cached
import cv2
from autoencoders import BodyAutoEncoder,HeadAutoEncoder
import os
import argparse
from prepare_ac_data import PrepareData
import glob
from time import time
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
class TrainingAutoEncoders:
"""
class containing training tools for auto_encoders
"""
def __init__(self,total_batch_size,dataset_directory="",pkl_file_name=""):
self.image_paths_train=[]
self.cls_train=[]
self.labels_train=[]
self.train_batch_size = total_batch_size
print("Batch size \n")
print (self.train_batch_size)
self.dataset_directory=dataset_directory
self.pkl_file_name=pkl_file_name
self.images_train_ksplits=[]
self.labels_train_ksplits=[]
def load_dataset(self):
dataset=load_cached(cache_path=self.pkl_file_name,in_dir=self.dataset_directory)
self.image_paths_train, self.cls_train, self.labels_train = dataset.get_training_set()
def random_batch(self):
# Number of images (transfer-values) in the training-set.
num_images = len(self.image_paths_train)
# Create a random index.
idx = np.random.choice(num_images,
size=self.train_batch_size,
replace=False)
# Use the random index to select random x and y-values.
# We use the transfer-values instead of images as x-values.
x_batch = array(self.image_paths_train)[idx]
y_batch = array(self.labels_train)[idx]
return x_batch, y_batch
def make_ksplits(self,ksplits=7):
x,y=self.random_batch()
print("Batch size =")
print (len(x))
self.images_train_ksplits = np.split(x, ksplits)
def get_split_images(self,k_split_no=1,total_splits=7,im_size=(224,224,3) ):
image_paths = self.images_train_ksplits[k_split_no] #start from 1 index
train_image = np.empty((len(image_paths), im_size[0], im_size[1],im_size[2]))
for i in range(len(image_paths)):
image = cv2.imread(image_paths[i])
if (image is not None):
resized_image = cv2.resize(image, dsize=(im_size[0], im_size[1]))
# resized_image_float=im2double(resized_image)
np_image = np.reshape(resized_image, im_size)
np_image = np_image.astype('float32')
train_image[i] = np_image
else:
np.delete(image_paths, (i), axis=0)
np.delete(train_image, (i), axis=0)
# train_image=np.append(train_image,np_image)
# del image, resized_image, np_image, image_paths
if k_split_no == total_splits-1:
image_paths_val = self.images_train_ksplits[0]
val_image_label = self.images_train_ksplits[0]
val_image = np.empty((len(image_paths_val), im_size[0], im_size[1],im_size[2]))
else:
image_paths_val = self.images_train_ksplits[k_split_no + 1]
y_paths_val = self.images_train_ksplits[k_split_no + 1]
val_image = np.empty((len(image_paths_val), im_size[0], im_size[1],im_size[2]))
for j in range(len(image_paths_val)):
image = cv2.imread(image_paths_val[j])
if (image is not None):
resized_image = cv2.resize(image, dsize=(im_size[0], im_size[1]))
# resized_image_float=im2double(resized_image)
np_image = np.reshape(resized_image, im_size)
np_image = np_image.astype('float32')
val_image[j] = np_image
else:
np.delete(image_paths_val, (j), axis=0)
np.delete(val_image, (j), axis=0)
# np.save('images.npy',train_image_np)
# del image, resized_image, np_image, image_paths_val
return train_image,val_image
def train_autoencoders(self,validation_splits=3,model_train=None,epochs=15,model_save_name='',im_size=(88,88,3),batch_size=1):
csv_logger = CSVLogger(model_save_name+'.csv',
append=True, separator=',')
# tensorboard = TensorBoard(log_dir="logs/{}".format(time()), histogram_freq=1,
# write_graph=True, write_images=False)
tensorboard =TrainValTensorBoard(write_graph=False)
callbacks_list2 = [csv_logger,tensorboard]
for i in range(epochs):
self.make_ksplits(ksplits=validation_splits)
for count in range(validation_splits-1):
train_images,val_images=self.get_split_images(k_split_no=count+1,total_splits=validation_splits,im_size=im_size)
model_train.fit(train_images, train_images, epochs=1, batch_size=batch_size,
validation_data=(val_images, val_images),callbacks=callbacks_list2)
model_train.save(model_save_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--xmls", help="path where xmls are existing", type=str,
required=True)
parser.add_argument("--folder_images", help="path where images reside", type=str,
required=True)
parser.add_argument("--target_folder", help="path of folder where the new data will be generated", type=str,
required=True)
parser.add_argument("--epochs", help="no of epochs for each autoencoder ", type=int, required=True)
parser.add_argument("--batch_size", help="batch size for per epoch ", type=int, required=True)
args = parser.parse_args()
#Preparation of the data for the autoencoders
data_p=PrepareData(folder_xml=args.xmls,folder_images=args.folder_images,folder_target=args.target_folder)
head_training_Path,ubody_training_Path,lbody_training_Path=data_p.prepare_Images()
print("Train autoencoder for head \n" )
total_files=glob.glob(head_training_Path +"training/" + "*.jpg")
model_instance=HeadAutoEncoder()
head_encoder, head_decoder,head_autoencoder=model_instance.model_func()
print (int(len(total_files)))
training_instance=TrainingAutoEncoders(total_batch_size=int(len(total_files)),dataset_directory=head_training_Path
,pkl_file_name="head_data.pkl")
training_instance.load_dataset()
training_instance.train_autoencoders(validation_splits=3,model_train=head_autoencoder
,epochs=args.epochs,model_save_name='head_autoEncoder.h5',im_size=(88,88,3)
,batch_size=args.batch_size)
print("Train autoencoder for upper body \n")
total_files = glob.glob(ubody_training_Path+"training/" + "*.jpg")
model_instance = BodyAutoEncoder()
ubody_encoder, ubody_decoder, ubody_autoencoder = model_instance.model_func()
training_instance = TrainingAutoEncoders(total_batch_size=int(len(total_files)),dataset_directory=ubody_training_Path
,pkl_file_name="ubody_data.pkl")
training_instance.load_dataset()
training_instance.train_autoencoders(validation_splits=4, model_train=ubody_autoencoder
, epochs=args.epochs, model_save_name='ubody_autoEncoder.h5',im_size=(128,128,3)
,batch_size=args.batch_size)
print("Train autoencoder for lower body \n")
total_files = glob.glob(lbody_training_Path + "training/" + "*.jpg")
model_instance = BodyAutoEncoder()
lbody_encoder, lbody_decoder, lbody_autoencoder = model_instance.model_func()
training_instance = TrainingAutoEncoders(total_batch_size=int(len(total_files)),
dataset_directory=lbody_training_Path
, pkl_file_name="lbody_data.pkl")
training_instance.load_dataset()
training_instance.train_autoencoders(validation_splits=3, model_train=ubody_autoencoder
, epochs=args.epochs, model_save_name='lbody_autoEncoder.h5',im_size=(128,128,3)
,batch_size=args.batch_size)