-
Notifications
You must be signed in to change notification settings - Fork 0
/
ftrain.py
50 lines (39 loc) · 1.49 KB
/
ftrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import numpy as np
from PIL import Image
import os
path = 'samples'
trainer_dir = 'trainers'
trainer_path = os.path.join(trainer_dir, 'trainer.yml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
def create_trainer_directory():
try:
# Check if 'trainers' directory exists, create if not
os.makedirs(trainer_dir, exist_ok=True)
print(f"Directory '{trainer_dir}' created successfully.")
except Exception as e:
print(f"Error creating directory: {e}")
def Images_And_Labels(path):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
faceSamples = []
ids = []
for imagePath in imagePaths:
gray_img = Image.open(imagePath).convert('L')
img_arr = np.array(gray_img, 'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_arr)
for (x, y, w, h) in faces:
faceSamples.append(img_arr[y:y+h, x:x+w])
ids.append(id)
return faceSamples, ids
# Ensure 'trainers' directory is created
create_trainer_directory()
print("Training faces. It will take a few seconds. Wait ...")
faces, ids = Images_And_Labels(path)
if faces and ids:
recognizer.train(faces, np.array(ids))
recognizer.save(trainer_path)
print(f"Model trained. Trainer saved at: {trainer_path}")
else:
print("No training data found. Make sure there are samples in the 'samples' folder.")