-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train.py
85 lines (78 loc) · 2.46 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import json
import torch
import torch.nn as nn
from torch.utils.data import DataLoader,Dataset
from NeuralNetwork import bag_of_words,stem,tokenize
from Brain import NeuralNet
with open('intents.json','r') as f:
intents = json.load(f)
all_words = []
tags = []
xy = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w,tag))
ignore_words = ['?','!','.',',']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
x_train = []
y_train = []
for(pattern_sentence,tag) in xy:
bag = bag_of_words(pattern_sentence,all_words)
x_train.append(bag)
label = tags.index(tag)
y_train.append(label)
x_train = np.array(x_train)
y_train = np.array(y_train)
num_epochs = 2500
batch_size = 8
learning_rate = 0.0001
input_size = len(x_train[0])
hidden_size = 8
output_size = len(tags)
print(input_size, output_size,x_train.shape,y_train.shape,"learning the model ....")
class chatDataset(Dataset):
def __init__(self):
self.n_samples = len(x_train)
self.x_data = x_train
self.y_data = y_train
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.n_samples
dataset = chatDataset()
train_loader = DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True,num_workers=0)
print(train_loader)
device = torch.device('cpu' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size,hidden_size,output_size).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)
for epoch in range(num_epochs):
for (words,labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
outputs = model(words)
loss = criterion(outputs,labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if(epoch+1)%100==0:
print(f'epoch {epoch+1}/{num_epochs},loss={loss.item():.4f}')
print(f'final loss,loss={loss.item():.4f}')
data = {
"model_state":model.state_dict(),
"input_size":input_size,
"output_size":output_size,
"hidden_size":hidden_size,
"all_words":all_words,
"tags":tags
}
FILE = "TrainData.pth"
torch.save(data,FILE)
print(f"training complete. file saved to {FILE}")