-
Notifications
You must be signed in to change notification settings - Fork 5
/
14-AppendixBrysbaert.Rmd
576 lines (487 loc) · 13.8 KB
/
14-AppendixBrysbaert.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Appendix 3: Comparison to Brysbaert {-}
## One-Way ANOVA
Now we will simply replicate the simulations of @brysbaert2019many, and compare those results to `Superpower`. Simulations to estimate the power of an ANOVA with three unrelated groups the effect between the two extreme groups is set to d = .4, the effect for the third group is d = .4 (see below for other situations) we use the built-in aov-test command give sample sizes (all samples sizes are equal).
```{r brysbaert_loop_1, eval=FALSE}
# Simulations to estimate the power of an ANOVA
#with three unrelated groups
# the effect between the two extreme groups is set to d = .4,
# the effect for the third group is d = .4
#(see below for other situations)
# we use the built-in aov-test command
# give sample sizes (all samples sizes are equal)
N = 90
# give effect size d
d1 = .4 # difference between the extremes
d2 = .4 # third condition goes with the highest extreme
# give number of simulations
nSim = nsims
# give alpha levels
# alpha level for the omnibus ANOVA
alpha1 = .05
#alpha level for three post hoc one-tail t-tests Bonferroni correction
alpha2 = .05
```
```{r eval=FALSE}
# create vectors to store p-values
p1 <- numeric(nSim) #p-value omnibus ANOVA
p2 <- numeric(nSim) #p-value first post hoc test
p3 <- numeric(nSim) #p-value second post hoc test
p4 <- numeric(nSim) #p-value third post hoc test
pes1 <- numeric(nSim) #partial eta-squared
pes2 <- numeric(nSim) #partial eta-squared two extreme conditions
```
```{r eval=FALSE}
for (i in 1:nSim) {
x <- rnorm(n = N, mean = 0, sd = 1)
y <- rnorm(n = N, mean = d1, sd = 1)
z <- rnorm(n = N, mean = d2, sd = 1)
data = c(x, y, z)
groups = factor(rep(letters[24:26], each = N))
test <- aov(data ~ groups)
pes1[i] <- etaSquared(test)[1, 2]
p1[i] <- summary(test)[[1]][["Pr(>F)"]][[1]]
p2[i] <- t.test(x, y)$p.value
p3[i] <- t.test(x, z)$p.value
p4[i] <- t.test(y, z)$p.value
data = c(x, y)
groups = factor(rep(letters[24:25], each = N))
test <- aov(data ~ groups)
pes2[i] <- etaSquared(test)[1, 2]
}
```
```{r eval=FALSE}
# results are as predicted when omnibus ANOVA is significant,
# t-tests are significant between x and y plus x and z;
# not significant between y and z
# printing all unique tests (adjusted code by DL)
sum(p1 < alpha1) / nSim
sum(p2 < alpha2) / nSim
sum(p3 < alpha2) / nSim
sum(p4 < alpha2) / nSim
mean(pes1)
mean(pes2)
```
```{r include=FALSE}
#p1
p1_1
#p2
p2_1
#p3
p3_1
#4
p4_1
#pes1
pes1_1
#pes2
pes2_1
```
### Three conditions replication
```{r}
K <- 3
mu <- c(0, 0.4, 0.4)
n <- 90
sd <- 1
r <- 0
design = paste(K, "b", sep = "")
```
```{r, message=FALSE, warning=FALSE}
design_result <- ANOVA_design(
design = design,
n = n,
mu = mu,
sd = sd,
labelnames = c("factor1", "level1", "level2", "level3")
)
```
```{r eval=FALSE, echo=TRUE}
simulation_result <- ANOVA_power(design_result,
alpha_level = alpha_level,
nsims = nsims,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(simulation_result_2.11$main_results,
caption = "Simulated ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
```{r}
exact_result <- ANOVA_exact(design_result,
alpha_level = alpha_level,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(exact_result$main_results,
caption = "Exact ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
### Variation 1
```{r eval=FALSE}
# give sample sizes (all samples sizes are equal)
N = 145
# give effect size d
d1 = .4 #difference between the extremes
d2 = .0 #third condition goes with the highest extreme
# give number of simulations
nSim = nsims
# give alpha levels
#alpha level for the omnibus ANOVA
alpha1 = .05
#alpha level for three post hoc one-tail t-test Bonferroni correction
alpha2 = .05
```
```{r eval=FALSE}
# create vectors to store p-values
p1 <- numeric(nSim) #p-value omnibus ANOVA
p2 <- numeric(nSim) #p-value first post hoc test
p3 <- numeric(nSim) #p-value second post hoc test
p4 <- numeric(nSim) #p-value third post hoc test
pes1 <- numeric(nSim) #partial eta-squared
pes2 <- numeric(nSim) #partial eta-squared two extreme conditions
```
```{r eval=FALSE}
for (i in 1:nSim) {
x <- rnorm(n = N, mean = 0, sd = 1)
y <- rnorm(n = N, mean = d1, sd = 1)
z <- rnorm(n = N, mean = d2, sd = 1)
data = c(x, y, z)
groups = factor(rep(letters[24:26], each = N))
test <- aov(data ~ groups)
pes1[i] <- etaSquared(test)[1, 2]
p1[i] <- summary(test)[[1]][["Pr(>F)"]][[1]]
p2[i] <- t.test(x, y)$p.value
p3[i] <- t.test(x, z)$p.value
p4[i] <- t.test(y, z)$p.value
data = c(x, y)
groups = factor(rep(letters[24:25], each = N))
test <- aov(data ~ groups)
pes2[i] <- etaSquared(test)[1, 2]
}
```
```{r eval=FALSE}
# results are as predicted when omnibus ANOVA is significant,
# t-tests are significant between x and y plus x and z;
# not significant between y and z
# printing all unique tests (adjusted code by DL)
sum(p1 < alpha1) / nSim
sum(p2 < alpha2) / nSim
sum(p3 < alpha2) / nSim
sum(p4 < alpha2) / nSim
mean(pes1)
mean(pes2)
```
```{r include=FALSE}
#p1
p1_2
#p2
p2_2
#p3
p3_2
#4
p4_2
#pes1
pes1_2
#pes2
pes2_2
```
### Three conditions replication
```{r}
K <- 3
mu <- c(0, 0.4, 0.0)
n <- 145
sd <- 1
r <- 0
design = paste(K, "b", sep = "")
```
```{r, message=FALSE, warning=FALSE}
design_result <- ANOVA_design(
design = design,
n = n,
mu = mu,
sd = sd,
labelnames = c("factor1", "level1", "level2", "level3")
)
```
```{r eval=FALSE, echo=TRUE}
simulation_result <- ANOVA_power(design_result,
alpha_level = alpha_level,
nsims = nsims,
verbose = FALSE)
```
```{r echo = FALSE}
knitr::kable(simulation_result_2.13$main_results,
caption = "Simulated ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
```{r}
exact_result <- ANOVA_exact(design_result,
alpha_level = alpha_level,
verbose = FALSE)
```
```{r echo = FALSE}
knitr::kable(exact_result$main_results,
caption = "Exact ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
### Variation 2
```{r eval=FALSE}
# give sample sizes (all samples sizes are equal)
N = 82
# give effect size d
d1 = .4 #difference between the extremes
d2 = .2 #third condition goes with the highest extreme
# give number of simulations
nSim = nsims
# give alpha levels
#alpha level for the omnibus ANOVA
alpha1 = .05
#alpha level for three post hoc one-tail t-test Bonferroni correction
alpha2 = .05
```
```{r eval=FALSE}
# create vectors to store p-values
p1 <- numeric(nSim) #p-value omnibus ANOVA
p2 <- numeric(nSim) #p-value first post hoc test
p3 <- numeric(nSim) #p-value second post hoc test
p4 <- numeric(nSim) #p-value third post hoc test
pes1 <- numeric(nSim) #partial eta-squared
```
```{r eval=FALSE}
for (i in 1:nSim) {
#for each simulated experiment
x <- rnorm(n = N, mean = 0, sd = 1)
y <- rnorm(n = N, mean = d1, sd = 1)
z <- rnorm(n = N, mean = d2, sd = 1)
data = c(x, y, z)
groups = factor(rep(letters[24:26], each = N))
test <- aov(data ~ groups)
pes1[i] <- etaSquared(test)[1, 2]
p1[i] <- summary(test)[[1]][["Pr(>F)"]][[1]]
p2[i] <- t.test(x, y)$p.value
p3[i] <- t.test(x, z)$p.value
p4[i] <- t.test(y, z)$p.value
data = c(x, y)
groups = factor(rep(letters[24:25], each = N))
test <- aov(data ~ groups)
pes2[i] <- etaSquared(test)[1, 2]
}
```
```{r eval=FALSE}
sum(p1 < alpha1) / nSim
sum(p2 < alpha2) / nSim
sum(p3 < alpha2) / nSim
sum(p4 < alpha2) / nSim
mean(pes1)
mean(pes2)
```
```{r include=FALSE}
#p1
p1_3
#p2
p2_3
#p3
p3_3
#4
p4_3
#pes1
pes1_3
#pes2
pes2_3
```
### Three conditions replication
```{r}
K <- 3
mu <- c(0, 0.4, 0.2)
n <- 82
sd <- 1
design = paste(K, "b", sep = "")
```
```{r, message=FALSE, warning=FALSE}
design_result <- ANOVA_design(
design = design,
n = n,
mu = mu,
sd = sd,
labelnames = c("factor1", "level1", "level2", "level3")
)
```
```{r eval=FALSE, echo=TRUE}
simulation_result <- ANOVA_power(design_result,
alpha_level = alpha_level,
nsims = nsims,
verbose = FALSE)
```
```{r echo = FALSE}
knitr::kable(simulation_result_2.15$main_results,
caption = "Simulated ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
```{r}
exact_result <- ANOVA_exact(design_result,
alpha_level = alpha_level,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(exact_result$main_results,
caption = "Exact ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
## Repeated Measures
We can reproduce the same results as Brysbaert finds with his code:
```{r}
design <- "3w"
n <- 75
mu <- c(0, 0.4, 0.4)
sd <- 1
r <- 0.5
labelnames <- c("speed", "fast", "medium", "slow")
```
We create the within design, and run the simulation
```{r, message=FALSE, warning=FALSE}
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
labelnames = labelnames)
```
```{r eval=FALSE}
simulation_result <- ANOVA_power(design_result,
alpha_level = alpha_level,
nsims = nsims,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(simulation_result_3.7$main_results,
caption = "Simulated ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
```{r}
exact_result <- ANOVA_exact(design_result,
alpha_level = alpha_level,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(exact_result$main_results,
caption = "Exact ANOVA Result")%>%
kable_styling(latex_options = "hold_position")
```
**Results**
The results of the simulation are very similar. Power for the ANOVA *F*-test is around 95.2%. For the three paired t-tests, power is around 92.7. This is in line with the a-priori power analysis when using Gpower:
![](screenshots/gpower_2.png)
We can perform an post-hoc power analysis in Gpower. We can calculate Cohen´s f based on the means and sd, using our own custom formula.
```{r}
# Our simulation is based onthe following means and sd:
# mu <- c(0, 0.4, 0.4)
# sd <- 1
# Cohen, 1988, formula 8.2.1 and 8.2.2
f <- sqrt(sum((mu - mean(mu)) ^ 2) / length(mu)) / sd
# We can see why f = 0.5*d.
# Imagine 2 group, mu = 1 and 2
# Grand mean is 1.5,
# we have sqrt(sum(0.5^2 + 0.5^2)/2), or sqrt(0.5/2), = 0.5.
# For Cohen's d we use the difference, 2-1 = 1.
```
The Cohen´s *f* is `r f`. We can enter the *f* (using the default 'as in G*Power 3.0' in the option window) and enter a sample size of 75, number of groups as 1, number of measurements as 3, correlation as 0.5. This yields:
![](screenshots/gpower_3.png)
### Reproducing Brysbaert Variation 1: Changing Correlation
```{r eval=FALSE}
# give sample size
N = 75
# give effect size d
d1 = .4 #difference between the extremes
d2 = .4 #third condition goes with the highest extreme
# give the correlation between the conditions
r = .6 #increased correlation
# give number of simulations
nSim = nsims
# give alpha levels
alpha1 = .05 #alpha level for the omnibus ANOVA
alpha2 = .05 #also adjusted from original by DL
```
```{r eval=FALSE}
# create vectors to store p-values
p1 <- numeric(nSim) #p-value omnibus ANOVA
p2 <- numeric(nSim) #p-value first post hoc test
p3 <- numeric(nSim) #p-value second post hoc test
p4 <- numeric(nSim) #p-value third post hoc test
# define correlation matrix
rho <- cbind(c(1, r, r), c(r, 1, r), c(r, r, 1))
# define participant codes
part <- paste("part",seq(1:N))
for (i in 1:nSim) {
#for each simulated experiment
data = mvrnorm(n = N,
mu = c(0, 0, 0),
Sigma = rho)
data[, 2] = data[, 2] + d1
data[, 3] = data[, 3] + d2
datalong = c(data[, 1], data[, 2], data[, 3])
conds = factor(rep(letters[24:26], each = N))
partID = factor(rep(part, times = 3))
output <- data.frame(partID, conds, datalong)
test <- aov(datalong ~ conds + Error(partID / conds),
data = output)
tests <- (summary(test))
p1[i] <- tests$'Error: partID:conds'[[1]]$'Pr(>F)'[[1]]
p2[i] <- t.test(data[, 1], data[, 2], paired = TRUE)$p.value
p3[i] <- t.test(data[, 1], data[, 3], paired = TRUE)$p.value
p4[i] <- t.test(data[, 2], data[, 3], paired = TRUE)$p.value
}
```
```{r eval=FALSE}
sum(p1 < alpha1) / nSim
sum(p2 < alpha2) / nSim
sum(p3 < alpha2) / nSim
sum(p4 < alpha2) / nSim
```
```{r echo = FALSE}
#p1
p1_2
#p2
p2_2
#p3
p3_2
#p4
p4_2
```
```{r}
design <- "3w"
n <- 75
mu <- c(0, 0.4, 0.4)
sd <- 1
r <- 0.6
labelnames <- c("SPEED",
"fast", "medium", "slow")
```
We create the 3-level repeated measures design, and run the simulation.
```{r, message=FALSE, warning=FALSE}
design_result <- ANOVA_design(design = design,
n = n,
mu = mu,
sd = sd,
r = r,
labelnames = labelnames)
```
```{r eval=FALSE}
simulation_result <- ANOVA_power(design_result,
alpha_level = alpha_level,
nsims = nsims,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(simulation_result_3.9$main_results,
caption = "Simulated ANOVA Result") %>%
kable_styling(latex_options = "hold_position")
```
```{r}
exact_result <- ANOVA_exact(design_result,
alpha_level = alpha_level,
verbose = FALSE)
```
```{r echo=FALSE}
knitr::kable(exact_result$main_results,
caption = "Exact ANOVA Result") %>%
kable_styling(latex_options = "hold_position")
```
Again, this is similar to GPower for the ANOVA:
![](screenshots/gpower_4.png)