-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathuctralgo.h
467 lines (428 loc) · 18.3 KB
/
uctralgo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// This file is part of the uSTL library, an STL implementation.
//
// Copyright (c) 2005 by Mike Sharov <[email protected]>
// This file is free software, distributed under the MIT License.
#pragma once
namespace ustl {
/// Copy copies elements from the range [first, last) to the range
/// [result, result + (last - first)). That is, it performs the assignments
/// *result = *first, *(result + 1) = *(first + 1), and so on. [1] Generally,
/// for every integer n from 0 to last - first, copy performs the assignment
/// *(result + n) = *(first + n). Assignments are performed in forward order,
/// i.e. in order of increasing n.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator>
inline OutputIterator copy (const Container& ctr, OutputIterator result)
{
return (copy (ctr.begin(), ctr.end(), result));
}
/// Copy_if copies elements from the range [first, last) to the range
/// [result, result + (last - first)) if pred(*i) returns true.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if (Container& ctr, OutputIterator result, Predicate pred)
{
return (copy_if (ctr.begin(), ctr.end(), result, pred));
}
/// For_each applies the function object f to each element in the range
/// [first, last); f's return value, if any, is ignored. Applications are
/// performed in forward order, i.e. from first to last. For_each returns
/// the function object after it has been applied to each element.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename UnaryFunction>
inline UnaryFunction for_each (Container& ctr, UnaryFunction f)
{
return (for_each (ctr.begin(), ctr.end(), f));
}
/// For_each applies the function object f to each element in the range
/// [first, last); f's return value, if any, is ignored. Applications are
/// performed in forward order, i.e. from first to last. For_each returns
/// the function object after it has been applied to each element.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename UnaryFunction>
inline UnaryFunction for_each (const Container& ctr, UnaryFunction f)
{
return (for_each (ctr.begin(), ctr.end(), f));
}
/// Returns the first iterator i in the range [first, last) such that
/// *i == value. Returns last if no such iterator exists.
/// \ingroup SearchingAlgorithms
///
template <typename Container, typename EqualityComparable>
inline typename Container::const_iterator find (const Container& ctr, const EqualityComparable& value)
{
return (find (ctr.begin(), ctr.end(), value));
}
template <typename Container, typename EqualityComparable>
inline typename Container::iterator find (Container& ctr, const EqualityComparable& value)
{
return (find (ctr.begin(), ctr.end(), value));
}
/// Returns the first iterator i in the range [first, last) such that
/// pred(*i) is true. Returns last if no such iterator exists.
/// \ingroup SearchingAlgorithms
///
template <typename Container, typename Predicate>
inline typename Container::const_iterator find_if (const Container& ctr, Predicate pred)
{
return (find_if (ctr.begin(), ctr.end(), pred));
}
template <typename Container, typename Predicate>
inline typename Container::iterator find_if (Container& ctr, Predicate pred)
{
return (find_if (ctr.begin(), ctr.end(), pred));
}
/// Count finds the number of elements in [first, last) that are equal
/// to value. More precisely, the first version of count returns the
/// number of iterators i in [first, last) such that *i == value.
/// \ingroup ConditionAlgorithms
///
template <typename Container, typename EqualityComparable>
inline size_t count (const Container& ctr, const EqualityComparable& value)
{
return (count (ctr.begin(), ctr.end(), value));
}
/// Count_if finds the number of elements in [first, last) that satisfy the
/// predicate pred. More precisely, the first version of count_if returns the
/// number of iterators i in [first, last) such that pred(*i) is true.
/// \ingroup ConditionAlgorithms
///
template <typename Container, typename Predicate>
inline size_t count_if (const Container& ctr, Predicate pred)
{
return (count_if (ctr.begin(), ctr.end(), pred));
}
/// The first version of transform performs the operation op(*i) for each
/// iterator i in the range [first, last), and assigns the result of that
/// operation to *o, where o is the corresponding output iterator. That is,
/// for each n such that 0 <= n < last - first, it performs the assignment
/// *(result + n) = op(*(first + n)).
/// The return value is result + (last - first).
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename UnaryFunction>
inline void transform (Container& ctr, UnaryFunction op)
{
transform (ctr.begin(), ctr.end(), ctr.begin(), op);
}
/// The first version of transform performs the operation op(*i) for each
/// iterator i in the range [first, last), and assigns the result of that
/// operation to *o, where o is the corresponding output iterator. That is,
/// for each n such that 0 <= n < last - first, it performs the assignment
/// *(result + n) = op(*(first + n)).
/// The return value is result + (last - first).
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename UnaryFunction>
inline OutputIterator transform (Container& ctr, OutputIterator result, UnaryFunction op)
{
return (transform (ctr.begin(), ctr.end(), result, op));
}
/// The second version of transform is very similar, except that it uses a
/// Binary Function instead of a Unary Function: it performs the operation
/// op(*i1, *i2) for each iterator i1 in the range [first1, last1) and assigns
/// the result to *o, where i2 is the corresponding iterator in the second
/// input range and where o is the corresponding output iterator. That is,
/// for each n such that 0 <= n < last1 - first1, it performs the assignment
/// *(result + n) = op(*(first1 + n), *(first2 + n).
/// The return value is result + (last1 - first1).
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename InputIterator, typename OutputIterator, typename BinaryFunction>
inline OutputIterator transform (Container& ctr, InputIterator first, OutputIterator result, BinaryFunction op)
{
return (transform (ctr.begin(), ctr.end(), first, result, op));
}
/// Replace replaces every element in the range [first, last) equal to
/// old_value with new_value. That is: for every iterator i,
/// if *i == old_value then it performs the assignment *i = new_value.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename T>
inline void replace (Container& ctr, const T& old_value, const T& new_value)
{
replace (ctr.begin(), ctr.end(), old_value, new_value);
}
/// Replace_if replaces every element in the range [first, last) for which
/// pred returns true with new_value. That is: for every iterator i, if
/// pred(*i) is true then it performs the assignment *i = new_value.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename Predicate, typename T>
inline void replace_if (Container& ctr, Predicate pred, const T& new_value)
{
replace_if (ctr.begin(), ctr.end(), pred, new_value);
}
/// Replace_copy copies elements from the range [first, last) to the range
/// [result, result + (last-first)), except that any element equal to old_value
/// is not copied; new_value is copied instead. More precisely, for every
/// integer n such that 0 <= n < last-first, replace_copy performs the
/// assignment *(result+n) = new_value if *(first+n) == old_value, and
/// *(result+n) = *(first+n) otherwise.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename T>
inline OutputIterator replace_copy (const Container& ctr, OutputIterator result, const T& old_value, const T& new_value)
{
return (replace_copy (ctr.begin(), ctr.end(), result, old_value, new_value));
}
/// Replace_copy_if copies elements from the range [first, last) to the range
/// [result, result + (last-first)), except that any element for which pred is
/// true is not copied; new_value is copied instead. More precisely, for every
/// integer n such that 0 <= n < last-first, replace_copy_if performs the
/// assignment *(result+n) = new_value if pred(*(first+n)),
/// and *(result+n) = *(first+n) otherwise.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename Predicate, typename T>
inline OutputIterator replace_copy_if (const Container& ctr, OutputIterator result, Predicate pred, const T& new_value)
{
return (replace_copy_if (ctr.begin(), ctr.end(), result, pred, new_value));
}
/// Fill assigns the value value to every element in the range [first, last).
/// That is, for every iterator i in [first, last),
/// it performs the assignment *i = value.
/// \ingroup GeneratorAlgorithms
///
template <typename Container, typename T>
inline void fill (Container& ctr, const T& value)
{
fill (ctr.begin(), ctr.end(), value);
}
/// Generate assigns the result of invoking gen, a function object that
/// takes no arguments, to each element in the range [first, last).
/// \ingroup GeneratorAlgorithms
///
template <typename Container, typename Generator>
inline void generate (Container& ctr, Generator gen)
{
generate (ctr.begin(), ctr.end(), gen);
}
/// Randomly permute the elements of the container.
/// \ingroup GeneratorAlgorithms
///
template <typename Container>
inline void random_shuffle (Container& ctr)
{
random_shuffle (ctr.begin(), ctr.end());
}
/// Remove_copy copies elements that are not equal to value from the range
/// [first, last) to a range beginning at result. The return value is the
/// end of the resulting range. This operation is stable, meaning that the
/// relative order of the elements that are copied is the same as in the
/// range [first, last).
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename T>
inline OutputIterator remove_copy (const Container& ctr, OutputIterator result, const T& value)
{
return (remove_copy (ctr.begin(), ctr.end(), result, value));
}
/// Remove_copy_if copies elements from the range [first, last) to a range
/// beginning at result, except that elements for which pred is true are not
/// copied. The return value is the end of the resulting range. This operation
/// is stable, meaning that the relative order of the elements that are copied
/// is the same as in the range [first, last).
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator, typename Predicate>
inline OutputIterator remove_copy_if (const Container& ctr, OutputIterator result, Predicate pred)
{
return (remove_copy_if (ctr.begin(), ctr.end(), result, pred));
}
/// Remove removes from the range [first, last) all elements that are equal to
/// value. That is, remove returns an iterator new_last such that the range
/// [first, new_last) contains no elements equal to value. Remove is stable,
/// meaning that the relative order of elements that are not equal to value is
/// unchanged.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename T>
inline void remove (Container& ctr, const T& value)
{
ctr.erase (remove_copy (ctr.begin(), ctr.end(), ctr.begin(), value), ctr.end());
}
/// Remove removes from the range [first, last) all elements that have an iterator
/// in range [rfirst, rlast). The range is assumed to be sorted. That is, remove
/// returns an iterator new_last such that the range [first, new_last) contains
/// no elements whose iterators are in [rfirst, rlast). Remove is stable,
/// meaning that the relative order of elements that are not equal to value is
/// unchanged. This version of the algorithm is a uSTL extension.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename ForwardIterator>
inline void remove (Container& ctr, ForwardIterator rfirst, ForwardIterator rlast)
{
ctr.erase (remove_copy (ctr.begin(), ctr.end(), ctr.begin(), rfirst, rlast), ctr.end());
}
/// Remove_if removes from the range [first, last) every element x such that
/// pred(x) is true. That is, remove_if returns an iterator new_last such that
/// the range [first, new_last) contains no elements for which pred is true.
/// The iterators in the range [new_last, last) are all still dereferenceable,
/// but the elements that they point to are unspecified. Remove_if is stable,
/// meaning that the relative order of elements that are not removed is
/// unchanged.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename Predicate>
inline void remove_if (Container& ctr, Predicate pred)
{
ctr.erase (remove_copy_if (ctr.begin(), ctr.end(), ctr.begin(), pred), ctr.end());
}
/// Unique_copy copies elements from the range [first, last) to a range
/// beginning with result, except that in a consecutive group of duplicate
/// elements only the first one is copied. The return value is the end of
/// the range to which the elements are copied. This behavior is similar
/// to the Unix filter uniq.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename OutputIterator>
inline OutputIterator unique_copy (const Container& ctr, OutputIterator result)
{
return (unique_copy (ctr.begin(), ctr.end(), result));
}
/// Every time a consecutive group of duplicate elements appears in the range
/// [first, last), the algorithm unique removes all but the first element.
/// That is, unique returns an iterator new_last such that the range [first,
/// new_last) contains no two consecutive elements that are duplicates.
/// The iterators in the range [new_last, last) are all still dereferenceable,
/// but the elements that they point to are unspecified. Unique is stable,
/// meaning that the relative order of elements that are not removed is
/// unchanged.
/// \ingroup MutatingAlgorithms
///
template <typename Container>
inline void unique (Container& ctr)
{
ctr.erase (unique_copy (ctr.begin(), ctr.end(), ctr.begin()), ctr.end());
}
/// Every time a consecutive group of duplicate elements appears in the range
/// [first, last), the algorithm unique removes all but the first element.
/// That is, unique returns an iterator new_last such that the range [first,
/// new_last) contains no two consecutive elements that are duplicates.
/// The iterators in the range [new_last, last) are all still dereferenceable,
/// but the elements that they point to are unspecified. Unique is stable,
/// meaning that the relative order of elements that are not removed is
/// unchanged.
/// \ingroup MutatingAlgorithms
///
template <typename Container, typename BinaryPredicate>
inline void unique (Container& ctr, BinaryPredicate binary_pred)
{
ctr.erase (unique_copy (ctr.begin(), ctr.end(), ctr.begin(), binary_pred), ctr.end());
}
/// Reverse reverses a range.
/// That is: for every i such that 0 <= i <= (last - first) / 2),
/// it exchanges *(first + i) and *(last - (i + 1)).
/// \ingroup MutatingAlgorithms
///
template <typename Container>
inline void reverse (Container& ctr)
{
reverse (ctr.begin(), ctr.end());
}
/// Exchanges ranges [first, middle) and [middle, last)
/// \ingroup MutatingAlgorithms
///
template <typename Container>
inline void rotate (Container& ctr, off_t offset)
{
assert (size_t(offset > 0 ? offset : -offset) < ctr.size());
if (offset > 0)
rotate (ctr.begin(), ctr.end() - offset, ctr.end());
else
rotate (ctr.begin(), ctr.begin() - offset, ctr.end());
}
/// Returns the furthermost iterator i in [first, last) such that,
/// for every iterator j in [first, i), *j < value
/// Assumes the range is sorted.
/// \ingroup SearchingAlgorithms
///
template <typename Container, typename LessThanComparable>
inline typename Container::const_iterator lower_bound (const Container& ctr, const LessThanComparable& value)
{
return (lower_bound (ctr.begin(), ctr.end(), value));
}
template <typename Container, typename LessThanComparable>
inline typename Container::iterator lower_bound (Container& ctr, const LessThanComparable& value)
{
return (lower_bound (ctr.begin(), ctr.end(), value));
}
/// Returns the furthermost iterator i in [first,last) such that for
/// every iterator j in [first,i), value < *j is false.
/// \ingroup SearchingAlgorithms
///
template <typename Container, typename LessThanComparable>
inline typename Container::const_iterator upper_bound (const Container& ctr, const LessThanComparable& value)
{
return (upper_bound (ctr.begin(), ctr.end(), value));
}
template <typename Container, typename LessThanComparable>
inline typename Container::iterator upper_bound (Container& ctr, const LessThanComparable& value)
{
return (upper_bound (ctr.begin(), ctr.end(), value));
}
/// Performs a binary search for \p value.
/// Assumes the range is sorted.
/// \ingroup SearchingAlgorithms
///
template <typename Container>
inline bool binary_search (const Container& ctr, const typename Container::value_type& value)
{
return (binary_search (ctr.begin(), ctr.end(), value));
}
template <typename Container>
inline bool binary_search (Container& ctr, const typename Container::value_type& value)
{
return (binary_search (ctr.begin(), ctr.end(), value));
}
/// Returns pair<lower_bound,upper_bound>
/// \ingroup SearchingAlgorithms
///
template <typename Container, typename LessThanComparable>
inline pair<typename Container::const_iterator,typename Container::const_iterator> equal_range (const Container& ctr, const LessThanComparable& value)
{
return (equal_range (ctr.begin(), ctr.end(), value));
}
template <typename Container, typename LessThanComparable>
inline pair<typename Container::iterator,typename Container::iterator> equal_range (Container& ctr, const LessThanComparable& value)
{
return (equal_range (ctr.begin(), ctr.end(), value));
}
/// Sorts the container
/// \ingroup SortingAlgorithms
///
template <typename Container>
inline void sort (Container& ctr)
{
sort (ctr.begin(), ctr.end());
}
/// Sorts the container
/// \ingroup SortingAlgorithms
///
template <typename Container, typename Compare>
inline void sort (Container& ctr, Compare comp)
{
sort (ctr.begin(), ctr.end(), comp);
}
/// Sorts the container
/// \ingroup SortingAlgorithms
///
template <typename Container>
inline void stable_sort (Container& ctr)
{
stable_sort (ctr.begin(), ctr.end());
}
/// Sorts the container
/// \ingroup SortingAlgorithms
///
template <typename Container, typename Compare>
inline void stable_sort (Container& ctr, Compare comp)
{
stable_sort (ctr.begin(), ctr.end(), comp);
}
} // namespace ustl