diff --git a/src/hippopt/robot_planning/utilities/terrain_descriptor.py b/src/hippopt/robot_planning/utilities/terrain_descriptor.py index a1198bd..0ffac3a 100644 --- a/src/hippopt/robot_planning/utilities/terrain_descriptor.py +++ b/src/hippopt/robot_planning/utilities/terrain_descriptor.py @@ -9,6 +9,7 @@ class TerrainDescriptor(abc.ABC): _height_function: cs.Function | None = dataclasses.field(default=None) _normal_direction_function: cs.Function | None = dataclasses.field(default=None) _orientation_function: cs.Function | None = dataclasses.field(default=None) + _transform_function: cs.Function | None = dataclasses.field(default=None) _point_position_name: str = dataclasses.field(default="point_position") _name: str = dataclasses.field(default=None) _options: dict = dataclasses.field(default_factory=dict) @@ -78,6 +79,25 @@ def create_orientation_function(self) -> cs.Function: self._options, ) + def create_transform_function(self) -> cs.Function: + point_position = cs.MX.sym(self.get_point_position_name(), 3) + height = self.height_function()(point_position) + rotation = self.orientation_function()(point_position) + + point_on_surface = cs.vertcat(point_position[:2], point_position[2] - height) + top_rows = cs.horzcat(rotation, point_on_surface) + fourth_row = cs.DM.eye(4)[3, :] + transform_matrix = cs.vertcat(top_rows, fourth_row) + + return cs.Function( + "terrain_transform", + [point_position], + [transform_matrix], + [self.get_point_position_name()], + ["plane_transform"], + self._options, + ) + def height_function(self) -> cs.Function: if not isinstance(self._height_function, cs.Function): self._height_function = self.create_height_function() @@ -96,6 +116,12 @@ def orientation_function(self) -> cs.Function: return self._orientation_function + def transform_function(self) -> cs.Function: + if not isinstance(self._transform_function, cs.Function): + self._transform_function = self.create_transform_function() + + return self._transform_function + def get_point_position_name(self) -> str: return self._point_position_name @@ -109,3 +135,4 @@ def invalidate_functions(self) -> None: self._height_function = None self._normal_direction_function = None self._orientation_function = None + self._transform_function = None diff --git a/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_single_jump_on_flat_ground.py b/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_single_jump_on_flat_ground.py new file mode 100644 index 0000000..2ad06da --- /dev/null +++ b/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_single_jump_on_flat_ground.py @@ -0,0 +1,627 @@ +import copy +import logging +import math + +import casadi as cs +import idyntree.bindings as idyntree +import liecasadi +import numpy as np +import resolve_robotics_uri_py + +import hippopt +import hippopt.robot_planning as hp_rp +import hippopt.turnkey_planners.humanoid_kinodynamic.planner as walking_planner +import hippopt.turnkey_planners.humanoid_kinodynamic.settings as walking_settings +import hippopt.turnkey_planners.humanoid_kinodynamic.variables as walking_variables +import hippopt.turnkey_planners.humanoid_pose_finder.planner as pose_finder + + +def get_planner_settings(terrain: hp_rp.TerrainDescriptor) -> walking_settings.Settings: + urdf_path = resolve_robotics_uri_py.resolve_robotics_uri( + "package://ergoCub/robots/ergoCubGazeboV1_minContacts/model.urdf" + ) + settings = walking_settings.Settings() + settings.terrain = terrain + settings.robot_urdf = str(urdf_path) + settings.joints_name_list = [ + "torso_pitch", + "torso_roll", + "torso_yaw", + "l_shoulder_pitch", + "l_shoulder_roll", + "l_shoulder_yaw", + "l_elbow", + "r_shoulder_pitch", + "r_shoulder_roll", + "r_shoulder_yaw", + "r_elbow", + "l_hip_pitch", + "l_hip_roll", + "l_hip_yaw", + "l_knee", + "l_ankle_pitch", + "l_ankle_roll", + "r_hip_pitch", + "r_hip_roll", + "r_hip_yaw", + "r_knee", + "r_ankle_pitch", + "r_ankle_roll", + ] + number_of_joints = len(settings.joints_name_list) + idyntree_model_loader = idyntree.ModelLoader() + idyntree_model_loader.loadReducedModelFromFile( + settings.robot_urdf, settings.joints_name_list + ) + idyntree_model = idyntree_model_loader.model() + settings.root_link = "root_link" + settings.horizon_length = 20 + settings.time_step = 0.05 + settings.contact_points = hp_rp.FeetContactPointDescriptors() + settings.contact_points.left = hp_rp.ContactPointDescriptor.rectangular_foot( + foot_frame="l_sole", + x_length=0.232, + y_length=0.1, + top_left_point_position=np.array([0.116, 0.05, 0.0]), + ) + settings.contact_points.right = hp_rp.ContactPointDescriptor.rectangular_foot( + foot_frame="r_sole", + x_length=0.232, + y_length=0.1, + top_left_point_position=np.array([0.116, 0.05, 0.0]), + ) + settings.planar_dcc_height_multiplier = 7.0 + settings.dcc_gain = 150.0 + settings.dcc_epsilon = 1.0 + settings.static_friction = 0.3 + settings.maximum_velocity_control = [2.0, 2.0, 10.0] + settings.maximum_force_derivative = [400.0, 400.0, 1000.0] + settings.maximum_angular_momentum = 5.0 + settings.minimum_com_height = 0.1 + settings.minimum_feet_lateral_distance = 0.1 + settings.maximum_feet_relative_height = 0.005 + settings.maximum_joint_positions = cs.inf * np.ones(number_of_joints) + settings.minimum_joint_positions = -cs.inf * np.ones(number_of_joints) + for i in range(number_of_joints): + joint = idyntree_model.getJoint(i) + if joint.hasPosLimits(): + settings.maximum_joint_positions[i] = joint.getMaxPosLimit(i) + settings.minimum_joint_positions[i] = joint.getMinPosLimit(i) + settings.maximum_joint_velocities = np.ones(number_of_joints) * 7.5 + settings.minimum_joint_velocities = np.ones(number_of_joints) * -7.5 + settings.joint_regularization_cost_weights = np.ones(number_of_joints) + settings.joint_regularization_cost_weights[:3] = 0.1 # torso + settings.joint_regularization_cost_weights[3:11] = 10.0 # arms + settings.joint_regularization_cost_weights[11:] = 1.0 # legs + settings.contacts_centroid_cost_multiplier = 0.0 + settings.com_linear_velocity_cost_weights = [10.0, 0.1, 1.0] + settings.com_linear_velocity_cost_multiplier = 0.0 + settings.desired_frame_quaternion_cost_frame_name = "chest" + settings.desired_frame_quaternion_cost_multiplier = 200.0 + settings.base_quaternion_cost_multiplier = 50.0 + settings.base_quaternion_velocity_cost_multiplier = 0.001 + settings.joint_regularization_cost_multiplier = 1.0 + settings.force_regularization_cost_multiplier = 100.0 + settings.foot_yaw_regularization_cost_multiplier = 2000.0 + settings.swing_foot_height_cost_multiplier = 0.0 + settings.contact_velocity_control_cost_multiplier = 5.0 + settings.contact_force_control_cost_multiplier = 0.1 + settings.final_state_expression_type = hippopt.ExpressionType.subject_to + settings.use_opti_callback = True + settings.opti_callback_save_costs = False + settings.opti_callback_save_constraint_multipliers = False + settings.casadi_function_options = {"cse": True} + settings.casadi_opti_options = {"expand": True, "detect_simple_bounds": True} + settings.casadi_solver_options = { + "max_iter": 10000, + "linear_solver": "mumps", + "fast_step_computation": "yes", + "hessian_approximation": "limited-memory", + "tol": 1e-3, + "dual_inf_tol": 1000.0, + "compl_inf_tol": 1e-2, + "constr_viol_tol": 1e-4, + "acceptable_tol": 10, + "acceptable_iter": 2, + "acceptable_compl_inf_tol": 1000, + "warm_start_bound_frac": 1e-2, + "warm_start_bound_push": 1e-2, + "warm_start_mult_bound_push": 1e-2, + "warm_start_slack_bound_frac": 1e-2, + "warm_start_slack_bound_push": 1e-2, + "warm_start_init_point": "yes", + "required_infeasibility_reduction": 0.8, + "perturb_dec_fact": 0.1, + "max_hessian_perturbation": 100.0, + } + + return settings + + +def get_pose_finder_settings( + input_settings: walking_settings.Settings, +) -> pose_finder.Settings: + number_of_joints = len(input_settings.joints_name_list) + settings = pose_finder.Settings() + settings.terrain = input_settings.terrain + settings.robot_urdf = input_settings.robot_urdf + settings.joints_name_list = input_settings.joints_name_list + + settings.root_link = input_settings.root_link + settings.desired_frame_quaternion_cost_frame_name = ( + input_settings.desired_frame_quaternion_cost_frame_name + ) + + settings.contact_points = input_settings.contact_points + + settings.relaxed_complementarity_epsilon = 1.0 + settings.static_friction = 0.3 + + settings.maximum_joint_positions = input_settings.maximum_joint_positions + settings.minimum_joint_positions = input_settings.minimum_joint_positions + + settings.joint_regularization_cost_weights = np.ones(number_of_joints) + settings.joint_regularization_cost_weights[:3] = 0.1 # torso + settings.joint_regularization_cost_weights[3:11] = 10.0 # arms + settings.joint_regularization_cost_weights[11:] = 1.0 # legs + + settings.base_quaternion_cost_multiplier = 50.0 + settings.desired_frame_quaternion_cost_multiplier = 100.0 + settings.joint_regularization_cost_multiplier = 0.1 + settings.force_regularization_cost_multiplier = 0.2 + settings.com_regularization_cost_multiplier = 10.0 + settings.average_force_regularization_cost_multiplier = 10.0 + settings.point_position_regularization_cost_multiplier = 100.0 + settings.casadi_function_options = input_settings.casadi_function_options + settings.casadi_opti_options = input_settings.casadi_opti_options + settings.casadi_solver_options = {} + + return settings + + +def get_visualizer_settings( + input_settings: walking_settings.Settings, +) -> hp_rp.HumanoidStateVisualizerSettings: + output_viz_settings = hp_rp.HumanoidStateVisualizerSettings() + output_viz_settings.robot_model = input_settings.robot_urdf + output_viz_settings.considered_joints = input_settings.joints_name_list + output_viz_settings.contact_points = input_settings.contact_points + output_viz_settings.terrain = input_settings.terrain + output_viz_settings.overwrite_terrain_files = True + output_viz_settings.working_folder = "./" + + return output_viz_settings + + +def compute_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + desired_com_position: np.ndarray, + desired_left_foot_pose: liecasadi.SE3, + desired_right_foot_pose: liecasadi.SE3, +) -> hp_rp.HumanoidState: + desired_joints = np.deg2rad( + [ + 7, + 0.12, + -0.01, + 12.0, + 7.0, + -12.0, + 40.769, + 12.0, + 7.0, + -12.0, + 40.769, + 5.76, + 1.61, + -0.31, + -31.64, + -20.52, + -1.52, + 5.76, + 1.61, + -0.31, + -31.64, + -20.52, + -1.52, + ] + ) + assert len(input_settings.joints_name_list) == len(desired_joints) + + pf_ref = pose_finder.References( + contact_point_descriptors=pf_settings.contact_points, + number_of_joints=len(desired_joints), + ) + + pf_ref.state.com = desired_com_position + pf_ref.state.contact_points.left = ( + hp_rp.FootContactState.from_parent_frame_transform( + descriptor=input_settings.contact_points.left, + transform=desired_left_foot_pose, + ) + ) + pf_ref.state.contact_points.right = ( + hp_rp.FootContactState.from_parent_frame_transform( + descriptor=input_settings.contact_points.right, + transform=desired_right_foot_pose, + ) + ) + + pf_ref.state.kinematics.base.quaternion_xyzw = ( + liecasadi.SO3.Identity().as_quat().coeffs() + ) + + pf_ref.frame_quaternion_xyzw = liecasadi.SO3.Identity().as_quat().coeffs() + + pf_ref.state.kinematics.joints.positions = desired_joints + + pf_input.set_references(pf_ref) + initial_guess = pf_input.get_initial_guess() + initial_guess.state = pf_ref.state + initial_guess.state.kinematics.base.position = initial_guess.state.com + pf_input.set_initial_guess(initial_guess) + + output_pf = pf_input.solve() + return output_pf.values.state + + +def compute_initial_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> walking_variables.ExtendedHumanoidState: + desired_left_foot_pose = contact_guess.left[0].transform + desired_right_foot_pose = contact_guess.right[0].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + output_pf = compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + output_state = walking_variables.ExtendedHumanoidState() + output_state.contact_points = output_pf.contact_points + output_state.kinematics = output_pf.kinematics + output_state.com = output_pf.com + + output_state.centroidal_momentum = np.zeros((6, 1)) + + return output_state + + +def compute_second_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> walking_variables.ExtendedHumanoidState: + desired_left_foot_pose = contact_guess.left[0].transform + desired_right_foot_pose = contact_guess.right[0].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.3 + output_pf = compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + output_state = walking_variables.ExtendedHumanoidState() + output_state.contact_points = output_pf.contact_points + output_state.kinematics = output_pf.kinematics + output_state.com = output_pf.com + + output_state.centroidal_momentum = np.zeros((6, 1)) + + return output_state + + +def compute_third_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> walking_variables.ExtendedHumanoidState: + desired_left_foot_pose = contact_guess.left[1].transform + desired_right_foot_pose = contact_guess.right[1].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.3 + output_pf = compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + output_state = walking_variables.ExtendedHumanoidState() + output_state.contact_points = output_pf.contact_points + output_state.kinematics = output_pf.kinematics + output_state.com = output_pf.com + + output_state.centroidal_momentum = np.zeros((6, 1)) + + return output_state + + +def compute_final_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> hp_rp.HumanoidState: + desired_left_foot_pose = contact_guess.left[1].transform + desired_right_foot_pose = contact_guess.right[1].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + return compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + +def get_references( + input_settings: walking_settings.Settings, + desired_states: list[hp_rp.HumanoidState], +) -> list[walking_variables.References]: + output_list = [] + + for i in range(input_settings.horizon_length): + output_reference = walking_variables.References( + number_of_joints=len(input_settings.joints_name_list), + number_of_points_left=len(input_settings.contact_points.left), + number_of_points_right=len(input_settings.contact_points.right), + ) + + output_reference.contacts_centroid_cost_weights = [100, 100, 10] + output_reference.contacts_centroid = [0.3, 0.0, 0.0] + output_reference.joint_regularization = desired_states[ + i + ].kinematics.joints.positions + output_reference.com_linear_velocity = [1.0, 0.0, 0.0] + output_list.append(output_reference) + + return output_list + + +if __name__ == "__main__": + logging.basicConfig(level=logging.INFO) + + jump_length = 0.4 + jump_height = 0.2 + jump_percentage = 0.25 + + planner_settings = get_planner_settings(hp_rp.PlanarTerrain()) + planner = walking_planner.Planner(settings=planner_settings) + + pf_settings = get_pose_finder_settings(input_settings=planner_settings) + pf = pose_finder.Planner(settings=pf_settings) + + horizon = planner_settings.horizon_length * planner_settings.time_step + + contact_phases_guess = hp_rp.FeetContactPhasesDescriptor() + contact_phases_guess.left = [ + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_translation_and_rotation( + np.array([0.0, 0.1, 0.0]), liecasadi.SO3.Identity() + ), + mid_swing_transform=liecasadi.SE3.from_translation_and_rotation( + np.array([jump_length / 2, 0.1, jump_height]), + liecasadi.SO3.Identity(), + ), + force=np.array([0, 0, 100.0]), + activation_time=None, + deactivation_time=(1.0 - jump_percentage) * horizon / 2.0, + ), + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_translation_and_rotation( + np.array([jump_length, 0.1, 0.0]), + liecasadi.SO3.Identity(), + ), + mid_swing_transform=None, + force=np.array([0, 0, 100.0]), + activation_time=(1.0 + jump_percentage) * horizon / 2.0, + deactivation_time=None, + ), + ] + + contact_phases_guess.right = [ + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_translation_and_rotation( + np.array([0.0, -0.1, 0.0]), liecasadi.SO3.Identity() + ), + mid_swing_transform=liecasadi.SE3.from_translation_and_rotation( + np.array([jump_length / 2, -0.1, jump_height]), + liecasadi.SO3.Identity(), + ), + force=np.array([0, 0, 100.0]), + activation_time=None, + deactivation_time=(1.0 - jump_percentage) * horizon / 2.0, + ), + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_translation_and_rotation( + np.array([jump_length, -0.1, 0.0]), + liecasadi.SO3.Identity(), + ), + mid_swing_transform=None, + force=np.array([0, 0, 100.0]), + activation_time=(1.0 + jump_percentage) * horizon / 2.0, + deactivation_time=None, + ), + ] + + visualizer_settings = get_visualizer_settings(input_settings=planner_settings) + visualizer = hp_rp.HumanoidStateVisualizer(settings=visualizer_settings) + + initial_state = compute_initial_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + second_state = compute_second_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + third_state = compute_third_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + final_state = compute_final_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + final_state.centroidal_momentum = np.zeros((6, 1)) + + middle_state = copy.deepcopy(initial_state) + middle_state.com[0] += jump_length / 2 + middle_state.com[2] += jump_height + middle_state.kinematics.base.position[0] += jump_length / 2 + middle_state.kinematics.base.position[2] += jump_height + for point in middle_state.contact_points.left + middle_state.contact_points.right: + point.p[0] += jump_length / 2 + point.p[2] += jump_height + + first_part_guess_length = math.floor( + planner_settings.horizon_length * (1.0 - jump_percentage) / 2.0 + ) + first_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=initial_state, + final_state=second_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=first_part_guess_length, + dt=planner_settings.time_step, + ) + + second_part_guess_length = math.floor( + planner_settings.horizon_length * jump_percentage / 2.0 + ) + second_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=second_state, + final_state=middle_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=second_part_guess_length, + dt=planner_settings.time_step, + t0=first_part_guess_length * planner_settings.time_step, + ) + + third_part_guess_length = math.floor( + planner_settings.horizon_length * jump_percentage / 2.0 + ) + third_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=middle_state, + final_state=third_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=third_part_guess_length, + dt=planner_settings.time_step, + t0=(first_part_guess_length + second_part_guess_length) + * planner_settings.time_step, + ) + + fourth_part_guess_length = ( + planner_settings.horizon_length + - first_part_guess_length + - second_part_guess_length + - third_part_guess_length + ) + fourth_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=third_state, + final_state=final_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=fourth_part_guess_length, + dt=planner_settings.time_step, + t0=( + first_part_guess_length + second_part_guess_length + third_part_guess_length + ) + * planner_settings.time_step, + ) + + guess = first_part_guess + second_part_guess + third_part_guess + fourth_part_guess + + print("Press [Enter] to visualize the initial guess.") + input() + + visualizer.visualize( + states=guess, + timestep_s=planner_settings.time_step, + time_multiplier=1.0, + save=True, + file_name_stem="humanoid_single_jump_flat_guess", + ) + + print("Starting the planner...") + + references = get_references( + input_settings=planner_settings, + desired_states=guess, + ) + + planner.set_references(references) + planner_guess = planner.get_initial_guess() + planner_guess.system = [ + walking_variables.ExtendedHumanoid.from_humanoid_state(s) for s in guess + ] + planner_guess.initial_state = initial_state + planner_guess.final_state = final_state + planner.set_initial_guess(planner_guess) + + output = planner.solve() + + humanoid_states = [s.to_humanoid_state() for s in output.values.system] + left_contact_points = [s.contact_points.left for s in humanoid_states] + right_contact_points = [s.contact_points.right for s in humanoid_states] + print("Press [Enter] to visualize the solution.") + input() + + visualizer.visualize( + states=humanoid_states, + timestep_s=output.values.dt, + time_multiplier=1.0, + save=True, + file_name_stem="humanoid_single_jump_flat", + ) + + plotter_settings = hp_rp.FootContactStatePlotterSettings() + plotter_settings.terrain = planner_settings.terrain + left_foot_plotter = hp_rp.FootContactStatePlotter(plotter_settings) + right_foot_plotter = hp_rp.FootContactStatePlotter(plotter_settings) + + left_foot_plotter.plot_complementarity( + states=left_contact_points, + time_s=output.values.dt, + title="Left Foot Complementarity", + blocking=False, + ) + right_foot_plotter.plot_complementarity( + states=right_contact_points, + time_s=output.values.dt, + title="Right Foot Complementarity", + blocking=False, + ) + + print("Press [Enter] to exit.") + input() + left_foot_plotter.close() + right_foot_plotter.close() diff --git a/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_walking_on_ramp.py b/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_walking_on_ramp.py new file mode 100644 index 0000000..0dcd5ce --- /dev/null +++ b/src/hippopt/turnkey_planners/humanoid_kinodynamic/main_walking_on_ramp.py @@ -0,0 +1,616 @@ +import logging + +import casadi as cs +import idyntree.bindings as idyntree +import liecasadi +import numpy as np +import resolve_robotics_uri_py + +import hippopt +import hippopt.robot_planning as hp_rp +import hippopt.turnkey_planners.humanoid_kinodynamic.planner as walking_planner +import hippopt.turnkey_planners.humanoid_kinodynamic.settings as walking_settings +import hippopt.turnkey_planners.humanoid_kinodynamic.variables as walking_variables +import hippopt.turnkey_planners.humanoid_pose_finder.planner as pose_finder + + +def get_ramp( + length: float, width: float, height: float, normal_direction: np.ndarray +) -> hp_rp.TerrainDescriptor: + first_step_origin = np.array([1.5 * length, 0.0, 0.0]) + + terrain = hp_rp.SmoothTerrain.step( + length=2 * length, + width=width, + height=height, + position=first_step_origin, + top_normal_direction=normal_direction, + ) + terrain.set_name(f"ramp_{length}_{width}_{height}") + return terrain + + +def get_planner_settings(terrain: hp_rp.TerrainDescriptor) -> walking_settings.Settings: + urdf_path = resolve_robotics_uri_py.resolve_robotics_uri( + "package://ergoCub/robots/ergoCubGazeboV1_minContacts/model.urdf" + ) + settings = walking_settings.Settings() + settings.terrain = terrain + settings.robot_urdf = str(urdf_path) + settings.joints_name_list = [ + "torso_pitch", + "torso_roll", + "torso_yaw", + "l_shoulder_pitch", + "l_shoulder_roll", + "l_shoulder_yaw", + "l_elbow", + "r_shoulder_pitch", + "r_shoulder_roll", + "r_shoulder_yaw", + "r_elbow", + "l_hip_pitch", + "l_hip_roll", + "l_hip_yaw", + "l_knee", + "l_ankle_pitch", + "l_ankle_roll", + "r_hip_pitch", + "r_hip_roll", + "r_hip_yaw", + "r_knee", + "r_ankle_pitch", + "r_ankle_roll", + ] + number_of_joints = len(settings.joints_name_list) + idyntree_model_loader = idyntree.ModelLoader() + idyntree_model_loader.loadReducedModelFromFile( + settings.robot_urdf, settings.joints_name_list + ) + idyntree_model = idyntree_model_loader.model() + settings.root_link = "root_link" + settings.horizon_length = 50 + settings.time_step = 0.1 + settings.contact_points = hp_rp.FeetContactPointDescriptors() + settings.contact_points.left = hp_rp.ContactPointDescriptor.rectangular_foot( + foot_frame="l_sole", + x_length=0.232, + y_length=0.1, + top_left_point_position=np.array([0.116, 0.05, 0.0]), + ) + settings.contact_points.right = hp_rp.ContactPointDescriptor.rectangular_foot( + foot_frame="r_sole", + x_length=0.232, + y_length=0.1, + top_left_point_position=np.array([0.116, 0.05, 0.0]), + ) + settings.planar_dcc_height_multiplier = 10.0 + settings.dcc_gain = 150.0 + settings.dcc_epsilon = 0.01 + settings.static_friction = 0.3 + settings.maximum_velocity_control = [2.0, 2.0, 5.0] + settings.maximum_force_derivative = [500.0, 500.0, 500.0] + settings.maximum_angular_momentum = 5.0 + settings.minimum_com_height = 0.3 + settings.minimum_feet_lateral_distance = 0.1 + settings.maximum_feet_relative_height = 0.5 + settings.maximum_joint_positions = cs.inf * np.ones(number_of_joints) + settings.minimum_joint_positions = -cs.inf * np.ones(number_of_joints) + for i in range(number_of_joints): + joint = idyntree_model.getJoint(i) + if joint.hasPosLimits(): + settings.maximum_joint_positions[i] = joint.getMaxPosLimit(i) + settings.minimum_joint_positions[i] = joint.getMinPosLimit(i) + settings.maximum_joint_velocities = np.ones(number_of_joints) * 2.0 + settings.minimum_joint_velocities = np.ones(number_of_joints) * -2.0 + settings.joint_regularization_cost_weights = np.ones(number_of_joints) + settings.joint_regularization_cost_weights[:3] = 0.1 # torso + settings.joint_regularization_cost_weights[3:11] = 10.0 # arms + settings.joint_regularization_cost_weights[11:] = 1.0 # legs + settings.contacts_centroid_cost_multiplier = 0.0 + settings.com_linear_velocity_cost_weights = [10.0, 0.1, 1.0] + settings.com_linear_velocity_cost_multiplier = 0.0 + settings.desired_frame_quaternion_cost_frame_name = "chest" + settings.desired_frame_quaternion_cost_multiplier = 200.0 + settings.base_quaternion_cost_multiplier = 50.0 + settings.base_quaternion_velocity_cost_multiplier = 0.001 + settings.joint_regularization_cost_multiplier = 1.0 + settings.force_regularization_cost_multiplier = 100.0 + settings.foot_yaw_regularization_cost_multiplier = 2000.0 + settings.swing_foot_height_cost_multiplier = 10.0 + settings.contact_velocity_control_cost_multiplier = 5.0 + settings.contact_force_control_cost_multiplier = 0.0001 + settings.final_state_expression_type = hippopt.ExpressionType.subject_to + settings.use_opti_callback = True + settings.opti_callback_save_costs = False + settings.opti_callback_save_constraint_multipliers = False + settings.casadi_function_options = {"cse": True} + settings.casadi_opti_options = {"expand": True, "detect_simple_bounds": True} + settings.casadi_solver_options = { + "max_iter": 10000, + "linear_solver": "mumps", + "fast_step_computation": "yes", + "hessian_approximation": "limited-memory", + "tol": 1e-3, + "dual_inf_tol": 1000.0, + "compl_inf_tol": 1e-2, + "constr_viol_tol": 1e-4, + "acceptable_tol": 10, + "acceptable_iter": 2, + "acceptable_compl_inf_tol": 1000, + "warm_start_bound_frac": 1e-2, + "warm_start_bound_push": 1e-2, + "warm_start_mult_bound_push": 1e-2, + "warm_start_slack_bound_frac": 1e-2, + "warm_start_slack_bound_push": 1e-2, + "warm_start_init_point": "yes", + "required_infeasibility_reduction": 0.8, + "perturb_dec_fact": 0.1, + "max_hessian_perturbation": 100.0, + } + + return settings + + +def get_pose_finder_settings( + input_settings: walking_settings.Settings, +) -> pose_finder.Settings: + number_of_joints = len(input_settings.joints_name_list) + settings = pose_finder.Settings() + settings.terrain = input_settings.terrain + settings.robot_urdf = input_settings.robot_urdf + settings.joints_name_list = input_settings.joints_name_list + + settings.root_link = input_settings.root_link + settings.desired_frame_quaternion_cost_frame_name = ( + input_settings.desired_frame_quaternion_cost_frame_name + ) + + settings.contact_points = input_settings.contact_points + + settings.relaxed_complementarity_epsilon = 1.0 + settings.static_friction = 0.3 + + settings.maximum_joint_positions = input_settings.maximum_joint_positions + settings.minimum_joint_positions = input_settings.minimum_joint_positions + + settings.joint_regularization_cost_weights = np.ones(number_of_joints) + settings.joint_regularization_cost_weights[:3] = 0.1 # torso + settings.joint_regularization_cost_weights[3:11] = 10.0 # arms + settings.joint_regularization_cost_weights[11:] = 1.0 # legs + + settings.base_quaternion_cost_multiplier = 50.0 + settings.desired_frame_quaternion_cost_multiplier = 100.0 + settings.joint_regularization_cost_multiplier = 0.1 + settings.force_regularization_cost_multiplier = 0.2 + settings.com_regularization_cost_multiplier = 10.0 + settings.average_force_regularization_cost_multiplier = 10.0 + settings.point_position_regularization_cost_multiplier = 100.0 + settings.casadi_function_options = input_settings.casadi_function_options + settings.casadi_opti_options = input_settings.casadi_opti_options + settings.casadi_solver_options = {} + + return settings + + +def get_visualizer_settings( + input_settings: walking_settings.Settings, +) -> hp_rp.HumanoidStateVisualizerSettings: + output_viz_settings = hp_rp.HumanoidStateVisualizerSettings() + output_viz_settings.robot_model = input_settings.robot_urdf + output_viz_settings.considered_joints = input_settings.joints_name_list + output_viz_settings.contact_points = input_settings.contact_points + output_viz_settings.terrain = input_settings.terrain + output_viz_settings.overwrite_terrain_files = True + output_viz_settings.working_folder = "./" + + return output_viz_settings + + +def compute_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + desired_com_position: np.ndarray, + desired_left_foot_pose: liecasadi.SE3, + desired_right_foot_pose: liecasadi.SE3, +) -> hp_rp.HumanoidState: + desired_joints = np.deg2rad( + [ + 7, + 0.12, + -0.01, + 12.0, + 7.0, + -12.0, + 40.769, + 12.0, + 7.0, + -12.0, + 40.769, + 5.76, + 1.61, + -0.31, + -31.64, + -20.52, + -1.52, + 5.76, + 1.61, + -0.31, + -31.64, + -20.52, + -1.52, + ] + ) + assert len(input_settings.joints_name_list) == len(desired_joints) + + pf_ref = pose_finder.References( + contact_point_descriptors=pf_settings.contact_points, + number_of_joints=len(desired_joints), + ) + + pf_ref.state.com = desired_com_position + pf_ref.state.contact_points.left = ( + hp_rp.FootContactState.from_parent_frame_transform( + descriptor=input_settings.contact_points.left, + transform=desired_left_foot_pose, + ) + ) + pf_ref.state.contact_points.right = ( + hp_rp.FootContactState.from_parent_frame_transform( + descriptor=input_settings.contact_points.right, + transform=desired_right_foot_pose, + ) + ) + + pf_ref.state.kinematics.base.quaternion_xyzw = ( + liecasadi.SO3.Identity().as_quat().coeffs() + ) + + pf_ref.frame_quaternion_xyzw = liecasadi.SO3.Identity().as_quat().coeffs() + + pf_ref.state.kinematics.joints.positions = desired_joints + + pf_input.set_references(pf_ref) + initial_guess = pf_input.get_initial_guess() + initial_guess.state = pf_ref.state + initial_guess.state.kinematics.base.position = initial_guess.state.com + pf_input.set_initial_guess(initial_guess) + + output_pf = pf_input.solve() + return output_pf.values.state + + +def compute_initial_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> walking_variables.ExtendedHumanoidState: + desired_left_foot_pose = contact_guess.left[0].transform + desired_right_foot_pose = contact_guess.right[0].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + output_pf = compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + output_state = walking_variables.ExtendedHumanoidState() + output_state.contact_points = output_pf.contact_points + output_state.kinematics = output_pf.kinematics + output_state.com = output_pf.com + + output_state.centroidal_momentum = np.zeros((6, 1)) + + return output_state + + +def compute_second_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> hp_rp.HumanoidState: + desired_left_foot_pose = contact_guess.left[0].transform + desired_right_foot_pose = contact_guess.right[1].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + return compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + +def compute_third_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> hp_rp.HumanoidState: + desired_left_foot_pose = contact_guess.left[1].transform + desired_right_foot_pose = contact_guess.right[1].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + return compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + +def compute_final_state( + input_settings: walking_settings.Settings, + pf_input: pose_finder.Planner, + contact_guess: hp_rp.FeetContactPhasesDescriptor, +) -> hp_rp.HumanoidState: + desired_left_foot_pose = contact_guess.left[1].transform + desired_right_foot_pose = contact_guess.right[2].transform + desired_com_position = ( + desired_left_foot_pose.translation() + desired_right_foot_pose.translation() + ) / 2.0 + desired_com_position[2] += 0.7 + return compute_state( + input_settings=input_settings, + pf_input=pf_input, + desired_com_position=desired_com_position, + desired_left_foot_pose=desired_left_foot_pose, + desired_right_foot_pose=desired_right_foot_pose, + ) + + +def get_references( + input_settings: walking_settings.Settings, + desired_states: list[hp_rp.HumanoidState], +) -> list[walking_variables.References]: + output_list = [] + + for i in range(input_settings.horizon_length): + output_reference = walking_variables.References( + number_of_joints=len(input_settings.joints_name_list), + number_of_points_left=len(input_settings.contact_points.left), + number_of_points_right=len(input_settings.contact_points.right), + ) + + output_reference.contacts_centroid_cost_weights = [100, 100, 10] + output_reference.contacts_centroid = [0.3, 0.0, 0.0] + output_reference.joint_regularization = desired_states[ + i + ].kinematics.joints.positions + output_reference.com_linear_velocity = [0.1, 0.0, 0.0] + output_list.append(output_reference) + + return output_list + + +if __name__ == "__main__": + logging.basicConfig(level=logging.INFO) + + step_length = 0.9 + step_height = 0.1 + swing_height = 0.1 + top_normal_direction = np.array([-0.2, 0.0, 1.0]) + + ramp = get_ramp( + length=step_length / 2, + width=0.8, + height=step_height, + normal_direction=top_normal_direction, + ) + + planner_settings = get_planner_settings(terrain=ramp) + planner = walking_planner.Planner(settings=planner_settings) + + pf_settings = get_pose_finder_settings(input_settings=planner_settings) + pf = pose_finder.Planner(settings=pf_settings) + + horizon = planner_settings.horizon_length * planner_settings.time_step + + contact_phases_guess = hp_rp.FeetContactPhasesDescriptor() + contact_phases_guess.left = [ + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_matrix( + ramp.transform_function()(np.array([0.0, 0.1, 0.0])).full() + ), + mid_swing_transform=liecasadi.SE3.from_translation_and_rotation( + np.array([step_length / 2, 0.1, swing_height + 2 * step_height]), + liecasadi.SO3.Identity(), + ), + force=np.array([0, 0, 100.0]), + activation_time=None, + deactivation_time=horizon * 3.0 / 7.0, + ), + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_matrix( + ramp.transform_function()(np.array([step_length, 0.1, 0.0])).full() + ), + mid_swing_transform=None, + force=np.array([0, 0, 100.0]), + activation_time=horizon * 4.0 / 7.0, + deactivation_time=None, + ), + ] + + contact_phases_guess.right = [ + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_matrix( + ramp.transform_function()(np.array([0.0, -0.1, 0.0])).full() + ), + mid_swing_transform=liecasadi.SE3.from_translation_and_rotation( + np.array([0.25 * step_length, -0.1, swing_height + step_height]), + liecasadi.SO3.Identity(), + ), + force=np.array([0, 0, 100.0]), + activation_time=None, + deactivation_time=horizon / 7.0, + ), + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_matrix( + ramp.transform_function()( + np.array([0.5 * step_length, -0.1, 0.0]) + ).full() + ), + mid_swing_transform=liecasadi.SE3.from_translation_and_rotation( + np.array([0.75 * step_length, -0.1, swing_height + 2 * step_height]), + liecasadi.SO3.Identity(), + ), + force=np.array([0, 0, 100.0]), + activation_time=horizon * 2.0 / 7.0, + deactivation_time=horizon * 5.0 / 7.0, + ), + hp_rp.FootContactPhaseDescriptor( + transform=liecasadi.SE3.from_matrix( + ramp.transform_function()(np.array([step_length, -0.1, 0.0])).full() + ), + mid_swing_transform=None, + force=np.array([0, 0, 100.0]), + activation_time=horizon * 6.0 / 7.0, + deactivation_time=None, + ), + ] + + visualizer_settings = get_visualizer_settings(input_settings=planner_settings) + visualizer = hp_rp.HumanoidStateVisualizer(settings=visualizer_settings) + + initial_state = compute_initial_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + final_state = compute_final_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + final_state.centroidal_momentum = np.zeros((6, 1)) + + second_state = compute_second_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + third_state = compute_third_state( + input_settings=planner_settings, + pf_input=pf, + contact_guess=contact_phases_guess, + ) + + # Until the middle of the second double support phase + first_part_guess_length = (planner_settings.horizon_length * 5) // 14 + first_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=initial_state, + final_state=second_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=first_part_guess_length, + dt=planner_settings.time_step, + ) + + # Until the middle of the third double support phase + second_part_guess_length = (planner_settings.horizon_length * 2) // 7 + second_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=second_state, + final_state=third_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=second_part_guess_length, + dt=planner_settings.time_step, + t0=first_part_guess_length * planner_settings.time_step, + ) + + # Remaining part + third_part_guess_length = ( + planner_settings.horizon_length + - first_part_guess_length + - second_part_guess_length + ) + third_part_guess = hp_rp.humanoid_state_interpolator( + initial_state=third_state, + final_state=final_state, + contact_phases=contact_phases_guess, + contact_descriptor=planner_settings.contact_points, + number_of_points=third_part_guess_length, + dt=planner_settings.time_step, + t0=(first_part_guess_length + second_part_guess_length) + * planner_settings.time_step, + ) + + guess = first_part_guess + second_part_guess + third_part_guess + + print("Press [Enter] to visualize the initial guess.") + input() + + visualizer.visualize( + states=guess, + timestep_s=planner_settings.time_step, + time_multiplier=1.0, + save=True, + file_name_stem="humanoid_walking_ramp_guess", + ) + + print("Starting the planner...") + + references = get_references( + input_settings=planner_settings, + desired_states=guess, + ) + + planner.set_references(references) + planner_guess = planner.get_initial_guess() + planner_guess.system = [ + walking_variables.ExtendedHumanoid.from_humanoid_state(s) for s in guess + ] + planner_guess.initial_state = initial_state + planner_guess.final_state = final_state + planner.set_initial_guess(planner_guess) + + output = planner.solve() + + humanoid_states = [s.to_humanoid_state() for s in output.values.system] + left_contact_points = [s.contact_points.left for s in humanoid_states] + right_contact_points = [s.contact_points.right for s in humanoid_states] + print("Press [Enter] to visualize the solution.") + input() + + visualizer.visualize( + states=humanoid_states, + timestep_s=output.values.dt, + time_multiplier=1.0, + save=True, + file_name_stem="humanoid_walking_ramp", + ) + + plotter_settings = hp_rp.FootContactStatePlotterSettings() + plotter_settings.terrain = planner_settings.terrain + left_foot_plotter = hp_rp.FootContactStatePlotter(plotter_settings) + right_foot_plotter = hp_rp.FootContactStatePlotter(plotter_settings) + + left_foot_plotter.plot_complementarity( + states=left_contact_points, + time_s=output.values.dt, + title="Left Foot Complementarity", + blocking=False, + ) + right_foot_plotter.plot_complementarity( + states=right_contact_points, + time_s=output.values.dt, + title="Right Foot Complementarity", + blocking=False, + ) + + print("Press [Enter] to exit.") + input() + left_foot_plotter.close() + right_foot_plotter.close() diff --git a/test/test_planar_terrain.py b/test/test_planar_terrain.py index 4ac8a0b..5f4bcaa 100644 --- a/test/test_planar_terrain.py +++ b/test/test_planar_terrain.py @@ -32,6 +32,12 @@ def test_planar_terrain(): assert (expected_orientation == output).all() # noqa + transform_fun = planar_terrain.transform_function() + expected_transform = np.eye(4) + + output = transform_fun(dummy_point).full() + assert (expected_transform == output).all() # noqa + assert planar_terrain.get_name() == "PlanarTerrain" other = hippopt.robot_planning.PlanarTerrain(name="other")