forked from vivekraghuram3/21-270-Summer-Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtcapPoly.jl
146 lines (131 loc) · 3.52 KB
/
tcapPoly.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
using SymPy
using Calculus
using ForwardDiff
using Optim
using Roots
using Polynomials
#using MultivariatePolynomials
using DynamicPolynomials
using PolynomialRoots
x0 = 100#initial capital
s0 = 1 #initial price
global u = 4 #up factor
global d = 0.5 #down factor
r = 0#interest rate
@polyvar y p#number of shares
μ = Sym("μ")
f(x) = log.(x) #utility function
q = 1 - p
p̃ = (1 + r - d)/(u - d)
q̃ = 1 - p̃
#calculates terminal capital given of n periods when stock goes up i times
#n is number of periods
#i is number of times stock goes up
function terminalcap(n, i)
tcap = (x0 - y)*(1+r)^(n) + u^(i) * d^(n-i) * y
return tcap
end
#calculates expected value, n is number of periods
function expectedVal(n)
eval = 0
for i in 0:n
tcap = (x0 - y)*(1+r)^n + u^i * d^(n-i)*y
println(tcap)
println(typeof(tcap))
eval += p^i * q^(n - i) * binomial(BigInt(n), BigInt(i)) * f(tcap)
end
println(typeof(eval))
return eval
end
#given a desired probability, calculate the optimal y
function pOptimalY(n, prob)
eval = 0
num = 0
for i in 0:n
tcap = (x0 - y)*(1+r)^n + u^i * d^(n-i)*y
num = DynamicPolynomials.differentiate(tcap, y)
eval += (prob)^i * (1-prob)^(n - i) * binomial(BigInt(n), BigInt(i)) * (num/tcap)
end
#println(typeof(eval))
#println(numerator(eval))
#println(eval)
numer = numerator(eval)
coeffs = [coefficient(numer, y^i) for i = 0 : maxdegree(numer)]
roo = real(PolynomialRoots.roots(coeffs))
#println(roo)
filter!(x->x>0, roo)
#println(roo)
if isempty(roo)
return 0
end
#println(roo)
return findmin(roo)[1]
end
function getSwitch(n, min, max, steps)
arr = zeros(steps + 1, 4)
for i in 1:(steps + 1)
println(i)
arr[i, 1] = min + (i-1) * (max - min)/steps
a = pOptimalY(1, arr[i, 1])
b = pOptimalY(n, arr[i, 1])
arr[i, 2] = a
arr[i, 3] = b
arr[i, 4] = b - a
end
println(arr)
println(size(arr, 1) + 1)
for i in 1:(size(arr, 1))
row = arr[i, :]
println(row)
if i == 1
continue
elseif i == steps
break
elseif arr[i-1, 4] < 0 && arr[i, 4] > 0 && arr[i+1, 4] >= 0
return arr[i, 1]
#elseif arr[i-1, 4] > 0 && arr[i, 4] < 0 && arr[i+1, 4] <=0
#println(arr[i, 1])
end
end
return -1
end
println(getSwitch(10, p̃, 1, 100))
function rnmExpectedVal(n)
eval = 0
for i in 0:n
eval += p̃^i * q̃^(n - i) * binomial(BigInt(n), BigInt(i)) * f(terminalcap(n, i))
end
return eval
end
#solve for y in terms of p for n, plug into n+1
#the goal is to solve for y and p in E[n] and E[n+1]
function getequipoints(n)
g = diff(expectedVal(n), y)
h = diff(expectedVal(n+1), y)
out = solve([g, h], [y, p])
return out
#optimize(diff(g, x0)) #Sym type
end
#finds switch probability given expected value and number of periods
#=function findswitch(n, exp)
g = diff(expectedval(n), y)
h = diff(expectedval(n+1), y)
out = solve([g - exp, h - exp], [y, p])
return out
end=#
#println(typeof(expectedval(1)))
function constantRatio(rat)
for i in 2:10
global u = i
global d = rat/i
println(u)
println(d)
println(real.(getequipoints(1)[2]))
end
end
#constantRatio(1/4)
#=println(typeof(lambdify(expectedval(1))))
g(y, p) = lambdify(expectedval(1))
vec = [rnmExpectedVal, p̃]
optimize(g(x), vec)=#
#tcap(n, i) = (x0 - y)*(1+r)^(n) + u^(i) * d^(n-i) * y