-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathopt_sswu_g2.sage
97 lines (83 loc) · 3.4 KB
/
opt_sswu_g2.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env sage
# vim: syntax=python
import sys
from util import get_cmdline_options
try:
from __sage__g1_common import Hp2, p, sgn0
from __sage__g2_common import Ell2, F2, X, roots_of_unity, clear_h2, print_g2_hex, print_iv_F2
from __sage__bls_sig_common import print_hash_test_vector
except ImportError:
sys.exit("Error loading preprocessed sage files. Try running `make clean pyfiles`")
# 3-isogenous curve to Ell2
Ell2p_a = F2(240 * X)
Ell2p_b = F2(1012 * (1 + X))
Ell2p = EllipticCurve(F2, [Ell2p_a, Ell2p_b])
# isogeny map back to Ell2
# since this takes a while to compute, save it in a file and reload it from disk
try:
iso2 = load("iso_g2")
assert iso2.codomain() == Ell2
except:
iso2 = EllipticCurveIsogeny(Ell2p, [6 * (1 - X), 1], codomain=Ell2)
iso2.dump("iso_g2", True)
# xi is the distinguished non-square for the SWU map
xi_2 = F2(-2 - X)
# eta values for converting a failed attempt at sqrt(g(X0(t))) to sqrt(g(X1(t)))
sqrt_sqrt_m1 = sqrt(X)
sqrt_sqrt_m1 *= sgn0(sqrt_sqrt_m1)
sqrt_m_sqrt_m1 = sqrt(-X)
sqrt_m_sqrt_m1 *= sgn0(sqrt_m_sqrt_m1)
eta1 = sqrt(xi_2 ** 3 / sqrt_sqrt_m1)
eta3 = sqrt(xi_2 ** 3 / sqrt_m_sqrt_m1)
etas = (eta1, X * eta1, eta3, X * eta3)
etas = tuple( sgn0(eta) * eta for eta in etas )
# y^2 = g2p(x) is the curve equation for Ell2p
def g2p(x):
return F2(x**3 + Ell2p_a * x + Ell2p_b)
# apply optimized simplified SWU map to a point t
def osswu2_help(t):
# compute the value X0(t)
num_den_common = F2(xi_2 ** 2 * t ** 4 + xi_2 * t ** 2)
if num_den_common == 0:
# exceptional case: use x0 = Ell2p_b / (xi_2 * Ell2p_a), which is square by design
x0 = F2(Ell2p_b) / F2(xi_2 * Ell2p_a)
else:
x0 = F2(-Ell2p_b * (num_den_common + 1)) / F2(Ell2p_a * num_den_common)
print_iv_F2(x0, "x0", "osswu2_help")
# g(X0), where y^2 = g(x) is the curve 3-isogenous to BLS12-381 Ell2
gx0 = g2p(x0)
# check whether gx0 is square by computing gx0 ^ ((p+1)/4)
sqrt_candidate = gx0 ** ((p**2 + 7) // 16)
# the square root will be given by sqrt_candidate times a root of unity; check them all
for root_of_unity in roots_of_unity:
y0_candidate = sqrt_candidate * root_of_unity
if y0_candidate ** 2 == gx0:
y0 = sgn0(t) * sgn0(y0_candidate) * y0_candidate
assert sgn0(y0) == sgn0(t)
return Ell2p(x0, y0)
# if we got here, the g(X0(t)) was not square
# X1(t) == xi t^2 X0(t), g(X1(t)) = xi^2 t^6 X0(t)
x1 = F2(xi_2 * t ** 2 * x0)
gx1 = xi_2 ** 3 * t ** 6 * gx0
assert gx1 == g2p(x1)
# if g(X0(t)) is not square, then sqrt(g(X1(t))) == eta * t^3 * g(X0(t)) ^ ((p+7)/16) for one of the etas above
for eta_value in etas:
y1_candidate = sqrt_candidate * eta_value * t ** 3
if y1_candidate ** 2 == gx1:
y1 = sgn0(t) * sgn0(y1_candidate) * y1_candidate
return Ell2p(x1, y1)
# if we got here, something went very wrong
raise RuntimeError("osswu2_help failed")
# F2 elm from vector of F elms
def from_vec(v):
return F2(v[0] + X * v[1])
# map from a string
def map2curve_osswu2(alpha, dst):
tmp = [ from_vec(u) for u in Hp2(alpha, 2, dst) ]
P = osswu2_help(tmp[0])
P2 = osswu2_help(tmp[1])
return clear_h2(iso2(P + P2))
if __name__ == "__main__":
(_, sig_inputs) = get_cmdline_options()
for hash_in in sig_inputs:
print_hash_test_vector(hash_in, '\x02', map2curve_osswu2, print_g2_hex, Ell2)