forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimplex_coordinates.html
205 lines (175 loc) · 6.16 KB
/
simplex_coordinates.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
<html>
<head>
<title>
SIMPLEX_COORDINATES - Coordinates of Regular Simplex in M Dimensions
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SIMPLEX_COORDINATES <br> Coordinates of Regular Simplex in M Dimensions
</h1>
<hr>
<p>
<b>SIMPLEX_COORDINATES</b>
is a FORTRAN90 library which
computes the Cartesian coordinates of the vertices of a regular
simplex in M dimensions.
</p>
<p>
There is a straightforward but tedious method for computing these
coordinates, coded in SIMPLEX_COORDINATES1, based on the idea of
selecting the first coordinate to be (1,0,0,...0), and noting
that the dot product with vectors 2 through N+1 must be -1/N,
which means the first row and first column of the coordinate matrix
are done. We can then move to entry (2,2), assume the coordinates
below it are 0, and set its value by requiring that the sum of the
squares of the (2,1) and (2,2) entries must be 1. Setting the (2,2)
entry then allows us to determine the rest of row 2 by the same
dot product criterion, and we proceed in this way til we have
completed the matrix.
</p>
<p>
A simpler algorithm, in SIMPLEX_COORDINATES2, notes that the identity
matrix will almost work for the first N vertices. Choose the last
vertex by assuming all its entries are equal to some constant A, and
that its distance from any other vertex must be sqrt ( 2 ). This
determines that (A-1)^2 + (N-1)*A^2 = 2, from which we get the value of
A as (1-sqrt(N+1))/N. To clean things up, we compute the centroid C
of these vertices, and recenter the simplex around the origin.
Then we determine the distance S of one vertex to the origin, and
rescale so that this becomes 1. The coding is simpler, and there
is much less chance for the accumulation of numerical error. Plus
I thought of this one myself.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SIMPLEX_COORDINATES</b> is available in
<a href = "../../c_src/simplex_coordinates/simplex_coordinates.html">a C version</a> and
<a href = "../../cpp_src/simplex_coordinates/simplex_coordinates.html">a C++ version</a> and
<a href = "../../f77_src/simplex_coordinates/simplex_coordinates.html">a FORTRAN77 version</a> and
<a href = "../../f_src/simplex_coordinates/simplex_coordinates.html">a FORTRAN90 version</a> and
<a href = "../../m_src/simplex_coordinates/simplex_coordinates.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/asa299/asa299.html">
ASA299</a>,
a FORTRAN90 library which
computes the lattice points in an M-dimensional simplex;
this is Applied Statistics Algorithm 299;
</p>
<p>
<a href = "../../f_src/geometry/geometry.html">
GEOMETRY</a>,
a FORTRAN90 library which
performs geometric calculations in 2, 3 and M-dimensional space.
</p>
<p>
<a href = "../../f_src/gm_rule/gm_rule.html">
GM_RULE</a>,
a FORTRAN90 library which
defines Grundmann-Moeller rules for quadrature over a triangle, tetrahedron,
or general M-dimensional simplex.
</p>
<p>
<a href = "../../f_src/random_data/random_data.html">
RANDOM_DATA</a>,
a FORTRAN90 library which
generates sample points for
various probability distributions, spatial dimensions, and geometries,
including the M-dimensional simplex.
</p>
<p>
<a href = "../../f77_src/simpack/simpack.html">
SIMPACK</a>,
a FORTRAN77 library which
approximates the integral of a function over an M-dimensional simplex.
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "simplex_coordinates.f90">simplex_coordinates.f90</a>, the source code.
</li>
<li>
<a href = "simplex_coordinates.sh">simplex_coordinates.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "simplex_coordinates_prb.f90">simplex_coordinates_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "simplex_coordinates_prb.sh">simplex_coordinates_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "simplex_coordinates_prb_output.txt">simplex_coordinates_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>R8_FACTORIAL</b> computes the factorial of N.
</li>
<li>
<b>R8MAT_DET</b> computes the determinant of an R8MAT.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT</b> prints an R8MAT, transposed.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT_SOME</b> prints some of an R8MAT, transposed.
</li>
<li>
<b>SIMPLEX_COORDINATES1</b> computes the Cartesian coordinates of simplex vertices.
</li>
<li>
<b>SIMPLEX_COORDINATES2</b> computes the Cartesian coordinates of simplex vertices.
</li>
<li>
<b>SIMPLEX_VOLUME</b> computes the volume of a simplex.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 19 September 2010.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>