forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeast.html
299 lines (262 loc) · 7.51 KB
/
keast.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
<html>
<head>
<title>
KEAST - Quadrature Rules for a Tetrahedron
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
KEAST <br> Quadrature Rules for a Tetrahedron
</h1>
<hr>
<p>
<b>KEAST</b>
is a FORTRAN90 library which
defines a set of quadrature rules for the tetrahedron.
</p>
<p>
The ten rules have the following orders and precisions:
<table border="1" align="center">
<tr>
<th>Rule</th><th>Order</th><th>Precision</th>
</tr>
<tr>
<td> 1</td><td> 1</td><td> 0</td>
</tr>
<tr>
<td> 2</td><td> 4</td><td> 1</td>
</tr>
<tr>
<td> 3</td><td> 5</td><td> 2</td>
</tr>
<tr>
<td> 4</td><td>10</td><td> 3</td>
</tr>
<tr>
<td> 5</td><td>11</td><td> 4</td>
</tr>
<tr>
<td> 6</td><td>14</td><td> 4</td>
</tr>
<tr>
<td> 7</td><td>15</td><td> 5</td>
</tr>
<tr>
<td> 8</td><td>24</td><td> 6</td>
</tr>
<tr>
<td> 9</td><td>31</td><td> 7</td>
</tr>
<tr>
<td>10</td><td>45</td><td> 8</td>
</tr>
</table>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>KEAST</b> is available in
<a href = "../../cpp_src/keast/keast.html">a C++ version</a> and
<a href = "../../f_src/keast/keast.html">a FORTRAN90 version</a> and
<a href = "../../m_src/keast/keast.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cubpack/cubpack.html">
CUBPACK</a>,
a FORTRAN90 library which
estimates the integral of a function
(or vector of functions) over a collection of N-dimensional
hyperrectangles and simplices.
</p>
<p>
<a href = "../../f_src/felippa/felippa.html">
FELIPPA</a>,
a FORTRAN90 library which
defines quadrature rules for lines, triangles, quadrilaterals,
pyramids, wedges, tetrahedrons and hexahedrons.
</p>
<p>
<a href = "../../f_src/gm_rule/gm_rule.html">
GM_RULE</a>,
a FORTRAN90 library which
defines Grundmann-Moeller
rules for quadrature over a triangle, tetrahedron, or general
M-dimensional simplex.
</p>
<p>
<a href = "../../f_src/ncc_tetrahedron/ncc_tetrahedron.html">
NCC_TETRAHEDRON</a>,
a FORTRAN90 library which
defines Newton-Cotes Closed quadrature
rules on a tetrahedron.
</p>
<p>
<a href = "../../f_src/nco_tetrahedron/nco_tetrahedron.html">
NCO_TETRAHEDRON</a>,
a FORTRAN90 library which
defines Newton-Cotes Open quadrature
rules on a tetrahedron.
</p>
<p>
<a href = "../../f_src/nintlib/nintlib.html">
NINTLIB</a>,
a FORTRAN90 library which
contains a variety
of routines for numerical estimation of integrals in multiple dimensions.
</p>
<p>
<a href = "../../datasets/quadrature_rules_tet/quadrature_rules_tet.html">
QUADRATURE_RULES_TET</a>,
a dataset directory which
contains triples of files defining various quadrature
rules on tetrahedrons.
</p>
<p>
<a href = "../../f_src/quadrule/quadrule.html">
QUADRULE</a>,
a FORTRAN90 library which
includes a library of routines for defining quadrature rules on a
variety of intervals with different weight functions.
</p>
<p>
<a href = "../../f_src/stroud/stroud.html">
STROUD</a>,
a FORTRAN90 library which
contains quadrature
rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and N-dimensions.
</p>
<p>
<a href = "../../f_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">
TETRAHEDRON_MONTE_CARLO</a>,
a FORTRAN90 program which
uses the Monte Carlo method to estimate integrals over a tetrahedron.
</p>
<p>
<a href = "../../datasets/tetrahedrons/tetrahedrons.html">
TETRAHEDRONS</a>,
a dataset directory which
contains examples of tetrahedrons;
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Patrick Keast,<br>
Moderate Degree Tetrahedral Quadrature Formulas,<br>
Computer Methods in Applied Mechanics and Engineering,<br>
Volume 55, Number 3, May 1986, pages 339-348.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "keast.f90">keast.f90</a>, the source code.
</li>
<li>
<a href = "keast.sh">keast.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "keast_prb.f90">keast_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "keast_prb.sh">keast_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "keast_prb_output.txt">keast_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>COMP_NEXT</b> computes the compositions of the integer N into K parts.
</li>
<li>
<b>I4_MODP</b> returns the nonnegative remainder of I4 division.
</li>
<li>
<b>I4_WRAP</b> forces an I4 to lie between given limits by wrapping.
</li>
<li>
<b>KEAST_DEGREE</b> returns the degree of a Keast rule for the tetrahedron.
</li>
<li>
<b>KEAST_ORDER_NUM</b> returns the order of a Keast rule for the tetrahedron.
</li>
<li>
<b>KEAST_RULE</b> returns the points and weights of a Keast rule.
</li>
<li>
<b>KEAST_RULE_NUM</b> returns the number of Keast rules for the tetrahedron.
</li>
<li>
<b>KEAST_SUBORDER</b> returns the suborders for a Keast rule.
</li>
<li>
<b>KEAST_SUBORDER_NUM</b> returns the number of suborders for a Keast rule.
</li>
<li>
<b>KEAST_SUBRULE</b> returns a compressed Keast rule.
</li>
<li>
<b>MONOMIAL_VALUE</b> evaluates a monomial.
</li>
<li>
<b>R8MAT_DET_4D</b> computes the determinant of a 4 by 4 R8MAT.
</li>
<li>
<b>TETRAHEDRON_REFERENCE_TO_PHYSICAL</b> maps T4 reference points to physical points.
</li>
<li>
<b>TETRAHEDRON_VOLUME</b> computes the volume of a tetrahedron in 3D.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 26 June 2007.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>