forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfem1d_heat_steady.html
305 lines (266 loc) · 8.18 KB
/
fem1d_heat_steady.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
<html>
<head>
<title>
FEM1D_HEAT_STEADY - Finite Element Method, 1D, Steady State Heat Equation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FEM1D_HEAT_STEADY <br> Finite Element Method, 1D, Steady State Heat Equation
</h1>
<hr>
<p>
<b>FEM1D_HEAT_STEADY</b>
is a FORTRAN90 program which
applies the finite element method, with piecewise linear elements,
to solve the steady state heat equation in one spatial dimension.
</p>
<p>
The finite element method is used with piecewise linear elements.
</p>
<p>
The steady state heat equation that is to be solved has the form:
<pre>
- d/dx ( k(x) * du/dx ) = f(x)
</pre>
in the interval A < x < B. The functions k(x) and f(x) are
given.
</p>
<p>
Boundary conditions are applied at the endpoints, and in this case,
these are assumed to have the form:
<pre>
u(A) = UA;
u(B) = UB.
</pre>
</p>
<p>
To compute a finite element approximation, a set of N equally spaced
nodes is defined from A to B, a set of piecewise linear basis functions
is set up, with one basis function associated with each node,
and then the differential
equation is multiplied by each basis function, and integration by parts is
used to simplify the integrand.
</p>
<p>
A simple two point Gauss quadrature formula is used to estimate the
resulting integrals over each interval.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
call <b>fem1d_heat_steady</b> ( <i>n</i>, <i>a</i>, <i>b</i>, <i>ua</i>, <i>ub</i>,
<i>k</i>, <i>f</i>, <i>x</i>, <i>u</i> )
</blockquote>
where
<ul>
<li>
<i>n</i> is the number of equally spaced nodes.
</li>
<li>
<i>a, b</i> are the left and right endpoints.
</li>
<li>
<i>ua, ub</i> are the prescribed values of U at the endpoints;
</li>
<li>
<i>k</i> is the function which evaluates k(x);
</li>
<li>
<i>f</i> is the function which evaluates f(x).
</li>
<li>
<i>x</i> is the input vector of <i>n</i> nodes, with x(1) = a, x(n) = b.
</li>
<li>
<i>u</i> is the output vector containing the estimated solution
value at the nodes.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FEM1D_HEAT_STEADY</b> is available in
<a href = "../../c_src/fem1d_heat_steady/fem1d_heat_steady.html">a C version</a> and
<a href = "../../cpp_src/fem1d_heat_steady/fem1d_heat_steady.html">a C++ version</a> and
<a href = "../../f77_src/fem1d_heat_steady/fem1d_heat_steady.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fem1d_heat_steady/fem1d_heat_steady.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fem1d_heat_steady/fem1d_heat_steady.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a FORTRAN90 program which
applies the finite difference method
to the steady state heat equation in one spatial dimension.
</p>
<p>
<a href = "../../data/fem1d/fem1d.html">
FEM1D</a>,
a data directory which
contains examples of 1D FEM files,
three text files that describe a 1D finite element model;
</p>
<p>
<a href = "../../f_src/fem1d/fem1d.html">
FEM1D</a>,
a FORTRAN90 program which
applies the finite element method to a linear two point boundary value problem
in a 1D region.
</p>
<p>
<a href = "../../f_src/fem1d_adaptive/fem1d_adaptive.html">
FEM1D_ADAPTIVE</a>,
a FORTRAN90 program which
applies the finite
element method to a linear two point boundary value problem
in a 1D region, using adaptive refinement to improve the solution.
</p>
<p>
<a href = "../../f_src/fem1d_bvp_linear/fem1d_bvp_linear.html">
FEM1D_BVP_LINEAR</a>,
a FORTRAN90 program which
applies the finite
element method to a linear two point boundary value problem
in a 1D region, using piecewise linear elements.
</p>
<p>
<a href = "../../f_src/fem1d_nonlinear/fem1d_nonlinear.html">
FEM1D_NONLINEAR</a>,
a FORTRAN90 program which
applies the finite element method to a nonlinear two point boundary value problem
in a 1D region.
</p>
<p>
<a href = "../../f_src/fem1d_pack/fem1d_pack.html">
FEM1D_PACK</a>,
a FORTRAN90 library which
contains utilities for 1D finite element calculations.
</p>
<p>
<a href = "../../f_src/fem1d_pmethod/fem1d_pmethod.html">
FEM1D_PMETHOD</a>,
a FORTRAN90 program which
applies the p-method version of the finite element method to a linear
two point boundary value problem in a 1D region.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Dianne O'Leary,<br>
Finite Differences and Finite Elements: Getting to Know You,<br>
Computing in Science and Engineering,<br>
Volume 7, Number 3, May/June 2005.
</li>
<li>
Dianne O'Leary,<br>
Scientific Computing with Case Studies,<br>
SIAM, 2008,<br>
ISBN13: 978-0-898716-66-5,<br>
LC: QA401.O44.
</li>
<li>
Hans Rudolf Schwarz,<br>
Finite Element Methods,<br>
Academic Press, 1988,<br>
ISBN: 0126330107,<br>
LC: TA347.F5.S3313..
</li>
<li>
Gilbert Strang, George Fix,<br>
An Analysis of the Finite Element Method,<br>
Cambridge, 1973,<br>
ISBN: 096140888X,<br>
LC: TA335.S77.
</li>
<li>
Olgierd Zienkiewicz,<br>
The Finite Element Method,<br>
Sixth Edition,<br>
Butterworth-Heinemann, 2005,<br>
ISBN: 0750663200,<br>
LC: TA640.2.Z54
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fem1d_heat_steady.f90">fem1d_heat_steady.f90</a>, the source code.
</li>
<li>
<a href = "fem1d_heat_steady.sh">fem1d_heat_steady.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fem1d_heat_steady_prb.f90">fem1d_heat_steady_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "fem1d_heat_steady_prb.sh">fem1d_heat_steady_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "fem1d_heat_steady_prb_output.txt">fem1d_heat_steady_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>FEM1D_HEAT_STEADY</b> solves the steady 1D heat equation with finite elements.
</li>
<li>
<b>R8MAT_SOLVE2</b> computes the solution of an N by N linear system.
</li>
<li>
<b>R8VEC_EVEN</b> returns an R8VEC of evenly spaced values.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 07 April 2011.
</i>
<!-- John Burkardt -->
</body>
</html>