-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathransacfit.m
111 lines (94 loc) · 3.51 KB
/
ransacfit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% Digital Video Stabilization and Rolling Shutter Correction using Gyroscopes
% Copyright (C) 2011 Alexandre Karpenko
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
function [BEST_TFORM, inlier_idx, best_error] = ransacfit(input_frame, base_frame, input_points, base_points, transformtype, dist_thresh, inlier_thresh)
% uses ransac to robustly fit input_points to base_points
% turn off warning for near singlar matrixes, since we won't be using them
% anyway
s = warning('off', 'Images:maketform:conditionNumberofAIsHigh');
if (strcmp(transformtype, 'affine'))
num_cps = 3;
elseif strcmp(transformtype, 'projective')
num_cps = 4;
else
error('Unknown transform type "%s".', transformtype);
end
if size(input_points,2) < 3
input_points(:,3) = ones(size(input_points,1),1);
end
num_points = size(input_points,1);
num_iter = 1000;
dist_thresh = dist_thresh * dist_thresh; % make the distance squared
best_error = inf;
BEST_TFORM = [];
inlier_idx = [];
for i=1:num_iter
found_points = 0;
while ~found_points
try
% randomly pick a set of points
while 1
idx = floor(rand(num_cps,1)*num_points) + 1;
if numel(unique(idx)) == numel(idx)
break;
end
end
% compute a transformation
TFORM = cp2tform(input_points(idx,1:2), base_points(idx,:), transformtype);
if isfield(TFORM.tdata, 'T')
found_points = 1;
end
catch e
%warning(e.message);
end
end
warped_points = input_points * TFORM.tdata.T;
warped_points = warped_points(:,1:2) ./ warped_points(:,[3 3]);
err = base_points - warped_points;
err = sum(err .* err, 2);
idx = err < dist_thresh;
num_inliers = sum(idx);
if (num_inliers > inlier_thresh)
% refine our transformation estimate
TFORM = cp2tform(input_points(idx,1:2), base_points(idx,:), transformtype);
warped_points = input_points(idx,:) * TFORM.tdata.T;
warped_points = warped_points(:,1:2) ./ warped_points(:,[3 3]);
err = base_points(idx,:) - warped_points;
err = mean(sum(err .* err, 2));
inlier_thresh = num_inliers;
%if (err < best_error)
best_error = err;
inlier_idx = find(idx);
BEST_TFORM = TFORM;
%{
figure(1);
display(err);
display(num_inliers);
imshow(imtransform(input_frame, TFORM, 'XData', [1 size(input_frame,2)], 'YData', [1 size(input_frame,1)]));
hold on;
h = imshow(base_frame);
set(h, 'AlphaData', 0.6);
pause;
a = input_points(idx,:)';
b = base_points(idx,:)';
figure(2);
imshow([input_frame; base_frame]);
line([a(1,:); b(1,:)],[a(2,:); b(2,:) + 720],'Color','b');
%}
%end
end
end
% restore warning state
warning(s);