forked from The-Fonz/xfoil-optimization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_pso_drag_lowRe_strut.py
489 lines (471 loc) · 11.9 KB
/
example_pso_drag_lowRe_strut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""
Test of Particle Swarm Optimization algorithm in combination with Xfoil and
the PARSEC airfoil parametrization. Trying to find low Re low drag airfoil
for given thickness (thus varying Re).
"""
from __future__ import division, print_function
from os import remove
import numpy as np
from copy import copy
from string import ascii_uppercase
from random import choice
import matplotlib.pyplot as plt
from optimization_algorithms.pso import Particle
from airfoil_generators import parsec
from xfoil import xfoil
strut_thickness = .01 #m
velocity = 10 #m/s
def calcRe(thickness):
# At 1atm and 10*C
kinematic_viscosity_air = 1.4207E-5
l = strut_thickness/thickness
return velocity*l/kinematic_viscosity_air
# Weigh score on frontal surface
def weighScore(Cd, thickness):
return Cd / thickness
constraints = np.array((
#rle x_pre/suc d2ydx2_pre/suc th_pre/suc y_pre/suc
(.015,.05), (.3,.75), (-2,.1), (0,40), (.03, .2)
))
# Good parameters at:
# http://hvass-labs.org/people/magnus/publications/pedersen10good-pso.pdf
iterations, S, omega, theta_g, theta_p = 14, 18, -0.2, 2.8, 0
def construct_airfoil(*pts):
k = {}
k['rle'] = pts[0]
k['x_pre'] = pts[1]
k['y_pre'] = -pts[4]
k['d2ydx2_pre'] = -pts[2]
# Trailing edge angle
k['th_pre'] = pts[3]
# Suction part
k['x_suc'] = k['x_pre']
k['y_suc'] = -k['y_pre']
k['d2ydx2_suc'] = -k['d2ydx2_pre']
k['th_suc'] = -k['th_pre']
# Trailing edge x and y position
k['xte'] = 1
k['yte'] = 0
return parsec.PARSEC(k)
def score_airfoil(airfoil):
max_thickness = airfoil.max_thickness()
Re = calcRe(max_thickness)
print("RE is ", Re, "MT is ", max_thickness)
# Make unique filename
randstr = ''.join(choice(ascii_uppercase) for i in range(20))
filename = "parsec_{}.dat".format(randstr)
# Save coordinates
with open(filename, 'w') as af:
af.write(airfoil.get_coords_plain())
# Let Xfoil do its magic
polar = xfoil.oper_visc_alpha(filename, 0, Re,
iterlim=80, show_seconds=0)
try:
remove(filename)
except WindowsError:
print("\n\n\n\nWindows was not capable of removing the file.\n\n\n\n")
try:
score = polar[0][0][2]
score = weighScore(score, max_thickness)
print("Score: ", score)
# If it's not NaN
if np.isfinite(score):
print("Return score")
return score
else:
print("Return None")
return None
except IndexError:
print("Return None (IndexError)")
return None
# Show plot and make redrawing possible
fig, (cur_afplt, lastpbest_afplt, gbest_afplt, score_plt) = plt.subplots(4,1)
# Enable auto-clearing
cur_afplt.hold(False)
lastpbest_afplt.hold(False)
gbest_afplt.hold(False)
plt.tight_layout()
# Interactive mode
plt.ion()
plt.pause(.0001)
# Initialize globals
global_bestscore = None
global_bestpos = None
global_bestairfoil = None
# Constructing a particle automatically initializes position and speed
particles = [Particle(constraints) for i in xrange(0, S)]
scores_y = []
for n in xrange(iterations+1):
print("\n\nIteration {}".format(n))
for i_par, particle in enumerate(particles):
# Keep scoring until converged
score = None
while not score:
# Update particle's velocity and position, if global best
if global_bestscore:
print("\nUpdate particle n{}p{}".format(n, i_par))
particle.update(global_bestpos, omega, theta_p, theta_g)
# None if not converged
airfoil = construct_airfoil(*particle.pts)
score = score_airfoil(airfoil)
plotstyle = "{}-".format(choice("rgb"))
airfoil.plot(cur_afplt, score="Cd {}".format(score), style=plotstyle,
title="Current, particle n{}p{}".format(n, i_par))
plt.pause(.0001)
if not score and (not global_bestscore or n==0):
print("Not converged, no global best, or first round. Randomizing particle.")
particle.randomize()
elif not score:
print("Not converged, there is a global best. Randomizing.")
particle.randomize()
if not particle.bestscore or score < particle.bestscore:
particle.new_best(score)
txt = 'particle best'
airfoil.plot(lastpbest_afplt, score="Cd {}".format(score), style=plotstyle,
title="Particle best, particle n{}p{}".format(n, i_par))
#plt.pause(.0001)
print("Found particle best, score {}".format(score))
if not global_bestscore or score < global_bestscore:
global_bestscore = score
# Copy to avoid globaL_bestpos becoming reference to array
global_bestpos = copy(particle.pts)
txt = 'global best'
airfoil.plot(gbest_afplt, score="Cd {}".format(score), style=plotstyle,
title="Global best, particle n{}p{}".format(n, i_par))
#plt.pause(.0001)
print("Found global best, score {}".format(score))
global_bestairfoil = airfoil
scores_y.append(global_bestscore)
score_plt.plot(scores_y, 'r-')
score_plt.set_title("Global best per round")
plt.pause(.0001)
print("# score = ", global_bestscore,
", pos = ", global_bestpos.__repr__(),
", airfoil points:\n{}".format(airfoil.get_coords_plain()))
plt.show()
# 11-2-14
# RE is 72047.1359611 MT is 0.0976969258288
#score = 0.0235421941938 , pos = array([ 0.04028559, 0.56905154, -0.15051354, 12.75297732, 0.03010498]) , airfoil points:
#1.000000 -0.000000
#0.999615 -0.000094
#0.998459 -0.000373
#0.996534 -0.000832
#0.993844 -0.001462
#0.990393 -0.002253
#0.986185 -0.003188
#0.981228 -0.004253
#0.975528 -0.005428
#0.969096 -0.006695
#0.961940 -0.008034
#0.954072 -0.009426
#0.945503 -0.010850
#0.936248 -0.012291
#0.926320 -0.013730
#0.915735 -0.015155
#0.904508 -0.016551
#0.892658 -0.017909
#0.880203 -0.019219
#0.867161 -0.020476
#0.853553 -0.021675
#0.839400 -0.022812
#0.824724 -0.023885
#0.809547 -0.024893
#0.793893 -0.025836
#0.777785 -0.026712
#0.761249 -0.027521
#0.744311 -0.028264
#0.726995 -0.028938
#0.709330 -0.029544
#0.691342 -0.030078
#0.673059 -0.030541
#0.654508 -0.030931
#0.635720 -0.031247
#0.616723 -0.031489
#0.597545 -0.031659
#0.578217 -0.031759
#0.558769 -0.031794
#0.539230 -0.031771
#0.519630 -0.031700
#0.500000 -0.031593
#0.480370 -0.031465
#0.460770 -0.031332
#0.441231 -0.031214
#0.421783 -0.031131
#0.402455 -0.031104
#0.383277 -0.031155
#0.364280 -0.031304
#0.345492 -0.031571
#0.326941 -0.031973
#0.308658 -0.032521
#0.290670 -0.033225
#0.273005 -0.034086
#0.255689 -0.035102
#0.238751 -0.036261
#0.222215 -0.037548
#0.206107 -0.038936
#0.190453 -0.040395
#0.175276 -0.041885
#0.160600 -0.043362
#0.146447 -0.044777
#0.132839 -0.046076
#0.119797 -0.047204
#0.107342 -0.048102
#0.095492 -0.048715
#0.084265 -0.048990
#0.073680 -0.048876
#0.063752 -0.048331
#0.054497 -0.047318
#0.045928 -0.045811
#0.038060 -0.043793
#0.030904 -0.041259
#0.024472 -0.038215
#0.018772 -0.034679
#0.013815 -0.030682
#0.009607 -0.026265
#0.006156 -0.021481
#0.003466 -0.016390
#0.001541 -0.011061
#0.000385 -0.005572
#0.000000 0.000000
#0.000385 0.005572
#0.001541 0.011061
#0.003466 0.016390
#0.006156 0.021481
#0.009607 0.026265
#0.013815 0.030682
#0.018772 0.034679
#0.024472 0.038215
#0.030904 0.041259
#0.038060 0.043793
#0.045928 0.045811
#0.054497 0.047318
#0.063752 0.048331
#0.073680 0.048876
#0.084265 0.048990
#0.095492 0.048715
#0.107342 0.048102
#0.119797 0.047204
#0.132839 0.046076
#0.146447 0.044777
#0.160600 0.043362
#0.175276 0.041885
#0.190453 0.040395
#0.206107 0.038936
#0.222215 0.037548
#0.238751 0.036261
#0.255689 0.035102
#0.273005 0.034086
#0.290670 0.033225
#0.308658 0.032521
#0.326941 0.031973
#0.345492 0.031571
#0.364280 0.031304
#0.383277 0.031155
#0.402455 0.031104
#0.421783 0.031131
#0.441231 0.031214
#0.460770 0.031332
#0.480370 0.031465
#0.500000 0.031593
#0.519630 0.031700
#0.539230 0.031771
#0.558769 0.031794
#0.578217 0.031759
#0.597545 0.031659
#0.616723 0.031489
#0.635720 0.031247
#0.654508 0.030931
#0.673059 0.030541
#0.691342 0.030078
#0.709330 0.029544
#0.726995 0.028938
#0.744311 0.028264
#0.761249 0.027521
#0.777785 0.026712
#0.793893 0.025836
#0.809547 0.024893
#0.824724 0.023885
#0.839400 0.022812
#0.853553 0.021675
#0.867161 0.020476
#0.880203 0.019219
#0.892658 0.017909
#0.904508 0.016551
#0.915735 0.015155
#0.926320 0.013730
#0.936248 0.012291
#0.945503 0.010850
#0.954072 0.009426
#0.961940 0.008034
#0.969096 0.006695
#0.975528 0.005428
#0.981228 0.004253
#0.986185 0.003188
#0.990393 0.002253
#0.993844 0.001462
#0.996534 0.000832
#0.998459 0.000373
#0.999615 0.000094
#1.000000 0.000000
# score = 0.00870235341255 , pos = array([ 0.02875577, 0.52143075, -1.31975537, 19.25893881, 0.10054965]) , airfoil points:
#1.000000 -0.000000
#0.999615 -0.000101
#0.998459 -0.000398
#0.996534 -0.000883
#0.993844 -0.001537
#0.990393 -0.002337
#0.986185 -0.003257
#0.981228 -0.004270
#0.975528 -0.005345
#0.969096 -0.006458
#0.961940 -0.007585
#0.954072 -0.008710
#0.945503 -0.009824
#0.936248 -0.010925
#0.926320 -0.012022
#0.915735 -0.013131
#0.904508 -0.014278
#0.892658 -0.015496
#0.880203 -0.016825
#0.867161 -0.018307
#0.853553 -0.019989
#0.839400 -0.021913
#0.824724 -0.024120
#0.809547 -0.026645
#0.793893 -0.029511
#0.777785 -0.032731
#0.761249 -0.036305
#0.744311 -0.040217
#0.726995 -0.044435
#0.709330 -0.048912
#0.691342 -0.053584
#0.673059 -0.058376
#0.654508 -0.063198
#0.635720 -0.067952
#0.616723 -0.072534
#0.597545 -0.076838
#0.578217 -0.080759
#0.558769 -0.084199
#0.539230 -0.087067
#0.519630 -0.089287
#0.500000 -0.090800
#0.480370 -0.091567
#0.460770 -0.091568
#0.441231 -0.090807
#0.421783 -0.089312
#0.402455 -0.087131
#0.383277 -0.084335
#0.364280 -0.081012
#0.345492 -0.077266
#0.326941 -0.073213
#0.308658 -0.068974
#0.290670 -0.064675
#0.273005 -0.060439
#0.255689 -0.056380
#0.238751 -0.052602
#0.222215 -0.049193
#0.206107 -0.046222
#0.190453 -0.043735
#0.175276 -0.041757
#0.160600 -0.040284
#0.146447 -0.039293
#0.132839 -0.038734
#0.119797 -0.038538
#0.107342 -0.038619
#0.095492 -0.038876
#0.084265 -0.039198
#0.073680 -0.039472
#0.063752 -0.039583
#0.054497 -0.039423
#0.045928 -0.038894
#0.038060 -0.037911
#0.030904 -0.036410
#0.024472 -0.034347
#0.018772 -0.031701
#0.013815 -0.028476
#0.009607 -0.024699
#0.006156 -0.020422
#0.003466 -0.015717
#0.001541 -0.010674
#0.000385 -0.005396
#0.000000 0.000000
#0.000385 0.005396
#0.001541 0.010674
#0.003466 0.015717
#0.006156 0.020422
#0.009607 0.024699
#0.013815 0.028476
#0.018772 0.031701
#0.024472 0.034347
#0.030904 0.036410
#0.038060 0.037911
#0.045928 0.038894
#0.054497 0.039423
#0.063752 0.039583
#0.073680 0.039472
#0.084265 0.039198
#0.095492 0.038876
#0.107342 0.038619
#0.119797 0.038538
#0.132839 0.038734
#0.146447 0.039293
#0.160600 0.040284
#0.175276 0.041757
#0.190453 0.043735
#0.206107 0.046222
#0.222215 0.049193
#0.238751 0.052602
#0.255689 0.056380
#0.273005 0.060439
#0.290670 0.064675
#0.308658 0.068974
#0.326941 0.073213
#0.345492 0.077266
#0.364280 0.081012
#0.383277 0.084335
#0.402455 0.087131
#0.421783 0.089312
#0.441231 0.090807
#0.460770 0.091568
#0.480370 0.091567
#0.500000 0.090800
#0.519630 0.089287
#0.539230 0.087067
#0.558769 0.084199
#0.578217 0.080759
#0.597545 0.076838
#0.616723 0.072534
#0.635720 0.067952
#0.654508 0.063198
#0.673059 0.058376
#0.691342 0.053584
#0.709330 0.048912
#0.726995 0.044435
#0.744311 0.040217
#0.761249 0.036305
#0.777785 0.032731
#0.793893 0.029511
#0.809547 0.026645
#0.824724 0.024120
#0.839400 0.021913
#0.853553 0.019989
#0.867161 0.018307
#0.880203 0.016825
#0.892658 0.015496
#0.904508 0.014278
#0.915735 0.013131
#0.926320 0.012022
#0.936248 0.010925
#0.945503 0.009824
#0.954072 0.008710
#0.961940 0.007585
#0.969096 0.006458
#0.975528 0.005345
#0.981228 0.004270
#0.986185 0.003257
#0.990393 0.002337
#0.993844 0.001537
#0.996534 0.000883
#0.998459 0.000398
#0.999615 0.000101
#1.000000 0.000000