forked from cs231n/cs231n.github.io
-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathindex.html
252 lines (219 loc) · 7.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
layout: default
---
<div>
스탠포드 CS231n 강의 <a href="http://cs231n.stanford.edu/">CS231n: Convolutional Neural Networks for Visual Recognition</a>에 대한 강의노트의 한글 번역 프로젝트입니다.
<br>
질문/논의거리/이슈 등은 <a href="mailto:[email protected]">AI Korea 이메일</a>로 연락주시거나, <a href="https://github.com/aikorea/cs231n.github.io">GitHub 레포지토리</a>에 pull request, 또는 이슈를 열어주세요.
</div>
<div class="home">
<div class="materials-wrap">
<div class="module-header">
<a href="glossary/">Glossary</a>
</div>
<div class="module-header">
<a href="video-lectures/">강의 동영상</a>
</div>
<div class="module-header">Winter 2016 과제</div>
<div class="materials-item">
<a href="assignments2016/assignment1/">
Assignment #1: 이미지 분류, kNN, SVM, Softmax, 뉴럴 네트워크
</a>
<span style="float:right">
<progress value="4" max="6"></progress>
</span>
</div>
<div class="materials-item">
<a href="assignments2016/assignment2/">
Assignment #2: Fully-Connected 네트워크, 배치 정규화(Batch Normalization), Dropout,
컨볼루션 신경망
</a>
<span style="float:right">
<progress value="1" max="5"></progress>
</span>
</div>
<div class="materials-item">
<a href="assignments2016/assignment3/">
Assignment #3: 회귀신경망(Recurrent Neural Networks), 이미지 캡셔닝(Captioning),
이미지 그라디언트, DeepDream
</a>
<span style="float:right">
<progress value="20" max="100"></progress>
</span>
</div>
<!--
<div class="module-header">Winter 2015 Assignments</div>
<div class="materials-item">
<a href="assignment1/">
Assignment #1: Image Classification, kNN, SVM, Softmax
</a>
</div>
<div class="materials-item">
<a href="assignment2/">
Assignment #2: Neural Networks, ConvNets I
</a>
</div>
<div class="materials-item">
<a href="assignment3/">
Assignment #3: ConvNets II, Transfer Learning, Visualization
</a>
</div>
-->
<div class="module-header">Module 0: 준비</div>
<div class="materials-item">
<a href="python-numpy-tutorial/">
Python / Numpy Tutorial
</a>
<span style="float:right" class="progress">
Complete! <progress value="1099" max="1099"></progress>
</span>
</div>
<div class="materials-item">
<a href="ipython-tutorial/">
IPython Notebook Tutorial
</a>
<span style="float:right;" class="progress">
Complete! <progress value="100" max="100"></progress>
</span>
</div>
<div class="materials-item">
<a href="terminal-tutorial/">
Terminal.com Tutorial
</a>
<span style="float:right" class="progress">
Complete! <progress value="100" max="100"></progress>
</span>
</div>
<div class="materials-item">
<a href="aws-tutorial/">
AWS Tutorial
</a>
<span style="float:right" class="progress">
Complete! <progress value="100" max="100"></progress>
</span>
</div>
<!-- hardcoding items here to force a specific order -->
<div class="module-header">Module 1: 신경망 구조</div>
<div class="materials-item">
<a href="classification/">
이미지 분류: 데이터 기반 방법론, k-Nearest Neighbor, train/val/test 구분
</a>
<span style="float:right" class="progress">
Complete! <progress value="294" max="294"></progress>
</span>
<div class="kw">
L1/L2 거리, hyperparameter 탐색, 교차검증(cross-validation)
</div>
</div>
<div class="materials-item">
<a href="linear-classify/">
선형 분류: Support Vector Machine, Softmax
</a>
<span style="float:right" class="progress">
<progress value="73" max="370"></progress>
</span>
<div class="kw">
parameteric 접근법, bias 트릭, hinge loss, cross-entropy loss, L2 regularization, 웹 데모
</div>
</div>
<div class="materials-item">
<a href="optimization-1/">
최적화: 확률 그라디언트 하강(Stochastic Gradient Descent)
</a>
<span style="float:right" class="progress">
Complete! <progress value="100" max="100"></progress>
</span>
<div class="kw">
'지형'으로서의 최적화 목적 함수 (optimization landscapes), 국소 탐색(local search), 학습 속도(learning rate), 해석적(analytic)/수치적(numerical) 그라디언트
</div>
</div>
<div class="materials-item">
<a href="optimization-2/">
Backpropagation, 직관
</a>
<span style="float:right" class="progress">
<progress value="240" max="300"></progress>
</span>
<div class="kw">
연쇄 법칙 (chain rule) 해석, real-valued circuits, 그라디언트 흐름의 패턴
</div>
</div>
<div class="materials-item">
<a href="neural-networks-1/">
신경망 파트 1: 네트워크 구조 정하기
</a>
<span style="float:right" class="progress">
<progress value="32" max="220"></progress>
</span>
<div class="kw">
생물학적 뉴런 모델, 활성 함수(activation functions), 신경망 구조, 표현력(representational power)
</div>
</div>
<div class="materials-item">
<a href="neural-networks-2-kr/">
신경망 파트 2: 데이터 준비 및 Loss
</a>
<span style="float:right" class="progress">
<progress value="232" max="308"></progress>
</span>
<div class="kw">
전처리, weight 초기값 설정, 배치 정규화(batch normalization), regularization (L2/dropout), 손실함수
</div>
</div>
<div class="materials-item">
<a href="neural-networks-3/">
신경망 파트 3: 학습 및 평가
</a>
<span style="float:right" class="progress">
<progress value="390" max="390"></progress>
</span>
<div class="kw">
그라디언트 체크, 버그 점검, 학습 과정 모니터링, momentum (+nesterov), 2차(2nd-order) 방법, Adagrad/RMSprop, hyperparameter 최적화, 모델 ensemble
</div>
</div>
<!--
<div class="materials-item">
<a href="neural-networks-case-study/">
Putting it together: Minimal Neural Network Case Study
</a>
<div class="kw">
minimal 2D toy data example
</div>
</div>
-->
<div class="module-header">Module 2: Convolutional Neural Networks</div>
<div class="materials-item">
<a href="convolutional-networks/">
컨볼루션 신경망: 구조, Convolution / Pooling 레이어들
</a>
<span style="float:right" class="progress">
Complete! <progress value="100" max="100"></progress>
</span>
<div class="kw">
레이어(층), 공간적 배치, 레이어 패턴, 레이어 사이즈, AlexNet/ZFNet/VGGNet 사례 분석, 계산량에 관한 고려 사항들
</div>
</div>
<div class="materials-item">
<a href="understanding-cnn/">
컨볼루션 신경망 분석 및 시각화
</a>
<span style="float:right" class="progress">
<progress value="14" max="107"></progress>
</span>
<div class="kw">
tSNE embeddings, deconvnets, 데이터에 대한 그라디언트, ConvNet 속이기, 사람과의 비교
</div>
</div>
<div class="materials-item">
<a href="transfer-learning/">
Transfer Learning and Fine-tuning Convolutional Neural Networks
</a>
<span style="float:right" class="progress">
<progress value="0" max="100"></progress>
</span>
</div>
<div class="module-header">
<a href="acknowledgement/">Acknowledgement</a>
</div>
</div>
</div>