For local development, please refer to the following steps:
-
Clone Repo
git clone [email protected]:aigc-apps/PAI-RAG.git
-
Development Environment Settings
This project uses poetry for management. To ensure environmental consistency and avoid problems caused by Python version differences, we specify Python version 3.11.
conda create -n rag_env python==3.11 conda activate rag_env
if you use macOS and need to process PPTX files, you need use the following command to install the dependencies to process PPTX files:
brew install mono-libgdiplus
Use poetry to install project dependency packages directly:
pip install poetry poetry install poetry run aliyun-bootstrap -a install
-
Common network timeout issues
Note: During the installation, if you encounter a network connection timeout, you can add the Alibaba Cloud or Tsinghua mirror source and append the following lines to the end of the pyproject.toml file:
[[tool.poetry.source]] name = "mirrors" url = "http://mirrors.aliyun.com/pypi/simple/" # Aliyun # url = "https://pypi.tuna.tsinghua.edu.cn/simple/" # Qsinghua priority = "default"
After that, execute the following commands:
poetry lock poetry install
-
Download Models:
Download models (embedding/pdf-extractor/reranker models) using
load_model
command:# Support model name (default ""), download all models mentioned before without parameter model_name. load_model [--model-name MODEL_NAME]
-
Run RAG Service
To use the DashScope API, you need to export environment variables:
export DASHSCOPE_API_KEY="xxx"
Please replace xxx with your own DASHSCOPE API key. You can find your keys here: https://dashscope.console.aliyun.com/apiKey
# Support custom host (default 0.0.0.0), port (default 8001), config (default src/pai_rag/config/settings.yaml), skip-download-models (default False) # Download [bge-m3, easyocr] by default, you can skip it by setting --skip-download-models. # you can use tool "load_model" to download other models including [bge-m3, easyocr, SGPT-125M-weightedmean-nli-bitfit, bge-large-zh-v1.5, bge-reranker-base, bge-reranker-large, paraphrase-multilingual-MiniLM-L12-v2, qwen_1.8b, text2vec-large-chinese] pai_rag serve [--host HOST] [--port PORT] [--config CONFIG_FILE] [--skip-download-models]
pai_rag serve
-
Run RAG WebUI
# Supports custom host (default 0.0.0.0), port (default 8002), config (default localhost:8001) pai_rag ui [--host HOST] [--port PORT] [rag-url RAG_URL]
You can also open http://localhost:8002/ to configure the RAG service and upload local data.
-
[Optional] Local load_data tool
Apart from upload files from web ui, you can load data into knowledge base using
load_data
scriptload_data -c src/pai_rag/config/settings.yaml -d data_path -p pattern
path examples:
a. load_data -d test/example b. load_data -d test/example_data/pai_document.pdf c. load_data -d test/example_data -p *.pdf