From b5bc4a73d4bf511e3853650ad738676e858b2202 Mon Sep 17 00:00:00 2001 From: DHEERAJ AGARWAL <37082099+dheerajsir@users.noreply.github.com> Date: Fri, 25 Oct 2024 18:32:06 +0530 Subject: [PATCH 1/3] Update tutorial-quickstart-xgboost.rst --- doc/source/tutorial-quickstart-xgboost.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/source/tutorial-quickstart-xgboost.rst b/doc/source/tutorial-quickstart-xgboost.rst index fe15227fdf11..a566d698e6fa 100644 --- a/doc/source/tutorial-quickstart-xgboost.rst +++ b/doc/source/tutorial-quickstart-xgboost.rst @@ -399,7 +399,7 @@ We first define a strategy for XGBoost bagging aggregation. return config We use two clients for this example. An ``evaluate_metrics_aggregation`` function is -defined to collect and wighted average the AUC values from clients. The ``config_func`` +defined to collect and weighted average the AUC values from clients. The ``config_func`` function is to return the current FL round number to client's ``fit()`` and ``evaluate()`` methods. From 0d0d9ae5d052b776de951ceaea1db035c45cd697 Mon Sep 17 00:00:00 2001 From: DHEERAJ AGARWAL <37082099+dheerajsir@users.noreply.github.com> Date: Fri, 25 Oct 2024 18:36:23 +0530 Subject: [PATCH 2/3] Update tutorial-quickstart-pytorch.rst --- doc/source/tutorial-quickstart-pytorch.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/source/tutorial-quickstart-pytorch.rst b/doc/source/tutorial-quickstart-pytorch.rst index 6b99e378d086..8502e4876bd3 100644 --- a/doc/source/tutorial-quickstart-pytorch.rst +++ b/doc/source/tutorial-quickstart-pytorch.rst @@ -226,7 +226,7 @@ The ClientApp The main changes we have to make to use `PyTorch` with `Flower` will be found in the ``get_weights()`` and ``set_weights()`` functions. In ``get_weights()`` PyTorch model parameters are extracted and represented as a list of NumPy arrays. The -``set_weights()`` function that's the oposite: given a list of NumPy arrays it applies +``set_weights()`` function that's the opposite: given a list of NumPy arrays it applies them to an existing PyTorch model. Doing this in fairly easy in PyTorch. .. note:: From 768cffd17cba24537b789d735dd4e4c9e6ad29d8 Mon Sep 17 00:00:00 2001 From: DHEERAJ AGARWAL <37082099+dheerajsir@users.noreply.github.com> Date: Fri, 25 Oct 2024 18:39:12 +0530 Subject: [PATCH 3/3] Update tutorial-quickstart-jax.rst --- doc/source/tutorial-quickstart-jax.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/source/tutorial-quickstart-jax.rst b/doc/source/tutorial-quickstart-jax.rst index 833270d5636f..238b49fe1681 100644 --- a/doc/source/tutorial-quickstart-jax.rst +++ b/doc/source/tutorial-quickstart-jax.rst @@ -226,10 +226,10 @@ set that the client might have: Finally, we can construct a ``ClientApp`` using the ``FlowerClient`` defined above by means of a ``client_fn()`` callback. Note that the `context` enables you to get access -to hyperparemeters defined in your ``pyproject.toml`` to configure the run. In this +to hyperparameters defined in your ``pyproject.toml`` to configure the run. In this tutorial we access the ``local-epochs`` setting to control the number of epochs a ``ClientApp`` will perform when running the ``fit()`` method. You could define -additioinal hyperparameters in ``pyproject.toml`` and access them here. +additional hyperparameters in ``pyproject.toml`` and access them here. .. code-block:: python