-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemo_modec.m
60 lines (49 loc) · 2.27 KB
/
demo_modec.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
%% DEMO: MODEC algorithm appplied to the automatic clustering problem
% ------------------------------------------------------------------------
% The Cluster Validity Index Tooolbox (CVIT) for automatic determination
% of clusters from clustering solution contains more than 70 functions (m-files)
% This toolbox was developed with MATLAB R2014a.
%
% Two CVIs are used as function objectives
%
% IMPORTANT: First run "RUN_ME_FIRST.m" file to add this toolbox to search path.
%------------------------------------------------------------------------
clc; clear all; close all;
addpath([pwd '/clustering']);
addpath([pwd '/proximity']);
addpath([pwd '/datasets']);
addpath([pwd '/validation']);
addpath([pwd '/cvi']);
addpath([pwd '/selection']);
addpath([pwd '/utils']);
% List of available cluster validity indices (CVIs)
CVInames = {'xb','ch','sf','pbm','cs',...
'gd31','gd41','gd51','gd33','gd43',...
'gd53','db2','db','cop','sil',...
'dunn','sv','sym','sdunn','sdb',...
'sdbw','cind'};
% List of available distances
Distnames = {'euc','neuc','cos','pcorr','scorr','lap'};
% List of datasets provided
DSnames = {'Data_4_3','Data_5_2','Sizes5', 'Iris'};
% ------------------------------------------------------------------------
%% Variables regarding the optimization problem
dataID = 3;
% load fisheriris;
% X = meas; T = [ones(50,1); ones(50,1)*2; ones(50,1)*3]; % Iris labels, k=3
% MODEData.X = X; MODEData.T=T;
Data = load(DSnames{dataID}); % Load the dataset listed in DS_names[]
MODEData.X = Data.data(:,1:end-1); % Dataset
MODEData.T = Data.data(:,end); % True labeling of dataset
MODEData.KMAX = 10; % Maximum number of clusters
MODEData.NOBJ = 2; % Number of objectives
MODEData.CVIs = {'XB','PBM'}; % XB_PBM, XB_DB
MODEData.POPSIZE = 50; % Population size
MODEData.MAXGEN = 500; % Generation bound
%% Run MODEC algorith
%rng default; rng(0);
OUT = modec(MODEData);
%% Supervised Model Selection using ARI
[Clr,ARIb,idx1,ARIvalues] = supervised(OUT.PClrs, MODEData.T);
disp(['Best ARI = ' num2str(ARIb) ' | Best ID = ' num2str(idx1) ' | PFA size = ' num2str(size(OUT.PClrs,2))]);
plotPFA(OUT.PFront,2,idx1)