-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfftutil.c
322 lines (243 loc) · 8.02 KB
/
fftutil.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
* fftutil.c
*
* Created on: Jan 5, 2018
* Author: deanm
*/
#include "Adafruit_ZeroFFT.h"
/*
* @brief In-place bit reversal function.
* @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
* @param[in] fftLen length of the FFT.
* @param[in] bitRevFactor bit reversal modifier that supports different
* size FFTs with the same bit reversal table
* @param[in] *pBitRevTab points to bit reversal table.
* @return none.
*/
static q15_t ALIGN4 scratchData[ZERO_FFT_MAX];
void arm_bitreversal_q15(q15_t *pSrc16, uint32_t fftLen, uint16_t bitRevFactor,
uint16_t *pBitRevTab) {
q31_t *pSrc = (q31_t *)pSrc16;
q31_t in;
uint32_t fftLenBy2, fftLenBy2p1;
uint32_t i, j;
/* Initializations */
j = 0u;
fftLenBy2 = fftLen / 2u;
fftLenBy2p1 = (fftLen / 2u) + 1u;
/* Bit Reversal Implementation */
for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u) {
if (i < j) {
/* pSrc[i] <-> pSrc[j]; */
/* pSrc[i+1u] <-> pSrc[j+1u] */
in = pSrc[i];
pSrc[i] = pSrc[j];
pSrc[j] = in;
/* pSrc[i + fftLenBy2p1] <-> pSrc[j + fftLenBy2p1]; */
/* pSrc[i + fftLenBy2p1+1u] <-> pSrc[j + fftLenBy2p1+1u] */
in = pSrc[i + fftLenBy2p1];
pSrc[i + fftLenBy2p1] = pSrc[j + fftLenBy2p1];
pSrc[j + fftLenBy2p1] = in;
}
/* pSrc[i+1u] <-> pSrc[j+fftLenBy2]; */
/* pSrc[i+2] <-> pSrc[j+fftLenBy2+1u] */
in = pSrc[i + 1u];
pSrc[i + 1u] = pSrc[j + fftLenBy2];
pSrc[j + fftLenBy2] = in;
/* Reading the index for the bit reversal */
j = *pBitRevTab;
/* Updating the bit reversal index depending on the fft length */
pBitRevTab += bitRevFactor;
}
}
void arm_radix2_butterfly_q15(q15_t *pSrc, uint32_t fftLen, q15_t *pCoef,
uint16_t twidCoefModifier) {
int i, j, k, l;
int n1, n2, ia;
q15_t xt, yt, cosVal, sinVal;
// N = fftLen;
n2 = fftLen;
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++) {
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1) {
l = i + n2;
xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u);
pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u;
yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u);
pSrc[2 * i + 1] =
((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u;
pSrc[2u * l] = (((int16_t)(((q31_t)xt * cosVal) >> 16)) +
((int16_t)(((q31_t)yt * sinVal) >> 16)));
pSrc[2u * l + 1u] = (((int16_t)(((q31_t)yt * cosVal) >> 16)) -
((int16_t)(((q31_t)xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
// loop for stage
for (k = fftLen / 2; k > 2; k = k >> 1) {
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++) {
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1) {
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;
pSrc[2u * l] = (((int16_t)(((q31_t)xt * cosVal) >> 16)) +
((int16_t)(((q31_t)yt * sinVal) >> 16)));
pSrc[2u * l + 1u] = (((int16_t)(((q31_t)yt * cosVal) >> 16)) -
((int16_t)(((q31_t)xt * sinVal) >> 16)));
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
} // stages loop end
n1 = n2;
n2 = n2 >> 1;
ia = 0;
// loop for groups
for (j = 0; j < n2; j++) {
cosVal = pCoef[ia * 2];
sinVal = pCoef[(ia * 2) + 1];
ia = ia + twidCoefModifier;
// loop for butterfly
for (i = j; i < fftLen; i += n1) {
l = i + n2;
xt = pSrc[2 * i] - pSrc[2 * l];
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
pSrc[2u * l] = xt;
pSrc[2u * l + 1u] = yt;
} // butterfly loop end
} // groups loop end
twidCoefModifier = twidCoefModifier << 1u;
}
static inline void applyWindow(q15_t *src, const q15_t *window, uint16_t len) {
while (len--) {
int32_t val = *src * *window++;
*src++ = val >> 15;
}
}
int ZeroFFT(q15_t *source, uint16_t length) {
uint16_t twidCoefModifier;
uint16_t bitRevFactor;
uint16_t *pBitRevTable;
q15_t *pSrc = source;
switch (length) {
#if ZERO_FFT_MAX == 8192
case 4096u:
/* Initializations of structure parameters for 4096 point FFT */
/* Initialise the twiddle coef modifier value */
twidCoefModifier = 1u;
/* Initialise the bit reversal table modifier */
bitRevFactor = 1u;
/* Initialise the bit reversal table pointer */
pBitRevTable = (uint16_t *)armBitRevTable;
applyWindow(source, window_hanning_4096, 4096);
break;
#endif
#if ZERO_FFT_MAX >= 4096
case 2048u:
/* Initializations of structure parameters for 2048 point FFT */
/* Initialise the twiddle coef modifier value */
twidCoefModifier = 2u;
/* Initialise the bit reversal table modifier */
bitRevFactor = 2u;
/* Initialise the bit reversal table pointer */
pBitRevTable = (uint16_t *)&armBitRevTable[1];
applyWindow(source, window_hanning_2048, 2048);
break;
#endif
#if ZERO_FFT_MAX >= 2048
case 1024u:
/* Initializations of structure parameters for 1024 point FFT */
twidCoefModifier = 4u;
bitRevFactor = 4u;
pBitRevTable = (uint16_t *)&armBitRevTable[3];
applyWindow(source, window_hanning_1024, 1024);
break;
#endif
#if ZERO_FFT_MAX >= 1024
case 512u:
/* Initializations of structure parameters for 512 point FFT */
twidCoefModifier = 8u;
bitRevFactor = 8u;
pBitRevTable = (uint16_t *)&armBitRevTable[7];
applyWindow(source, window_hanning_512, 512);
break;
#endif
#if ZERO_FFT_MAX >= 512
case 256u:
/* Initializations of structure parameters for 256 point FFT */
twidCoefModifier = 16u;
bitRevFactor = 16u;
pBitRevTable = (uint16_t *)&armBitRevTable[15];
applyWindow(source, window_hanning_256, 256);
break;
#endif
case 128u:
/* Initializations of structure parameters for 128 point FFT */
twidCoefModifier = 32u;
bitRevFactor = 32u;
pBitRevTable = (uint16_t *)&armBitRevTable[31];
applyWindow(source, window_hanning_128, 128);
break;
case 64u:
/* Initializations of structure parameters for 64 point FFT */
twidCoefModifier = 64u;
bitRevFactor = 64u;
pBitRevTable = (uint16_t *)&armBitRevTable[63];
applyWindow(source, window_hanning_64, 64);
break;
case 32u:
/* Initializations of structure parameters for 32 point FFT */
twidCoefModifier = 128u;
bitRevFactor = 128u;
pBitRevTable = (uint16_t *)&armBitRevTable[127];
applyWindow(source, window_hanning_32, 32);
break;
case 16u:
/* Initializations of structure parameters for 16 point FFT */
twidCoefModifier = 256u;
bitRevFactor = 256u;
pBitRevTable = (uint16_t *)&armBitRevTable[255];
applyWindow(source, window_hanning_16, 16);
break;
default:
/* Reporting argument error if fftSize is not valid value */
return -1;
break;
}
// split the data
q15_t *pOut = scratchData;
for (int i = 0; i < length; i++) {
*pOut++ = *pSrc++; // real
*pOut++ = 0; // imaginary
}
arm_radix2_butterfly_q15(scratchData, length, (q15_t *)twiddleCoefQ15,
twidCoefModifier);
arm_bitreversal_q15(scratchData, length, bitRevFactor, pBitRevTable);
pSrc = source;
pOut = scratchData;
for (int i = 0; i < length; i++) {
q15_t val = *pOut++;
uint32_t v = abs(val);
*pSrc++ = v;
pOut++; // discard imaginary phase val
}
return 0;
}