-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.js
218 lines (186 loc) · 5.96 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import { MnistData } from "./data.js";
import { createDrawnDigitInput } from "./drawn_digit_input.js";
async function showExamples(data) {
// Create a container in the visor
const surface = tfvis
.visor()
.surface({ name: "Input Data Examples", tab: "Input Data" });
// Get the examples
const examples = data.nextTestBatch(20);
const numExamples = examples.xs.shape[0];
// Create a canvas element to render each example
for (let i = 0; i < numExamples; i++) {
const imageTensor = tf.tidy(() => {
// Reshape the image to 28x28 px
return examples.xs
.slice([i, 0], [1, examples.xs.shape[1]])
.reshape([28, 28, 1]);
});
const canvas = document.createElement("canvas");
canvas.width = 28;
canvas.height = 28;
canvas.style = "margin: 4px;";
await tf.browser.toPixels(imageTensor, canvas);
surface.drawArea.appendChild(canvas);
imageTensor.dispose();
}
}
async function run() {
// Create the canvas element.
createDrawnDigitInput({
width: 400,
height: 400,
size: 28,
cellColor: "rgb(17, 212, 177)",
root: document.querySelector(".drawn-digit-input-container"),
predict(data) {
// data is the 2d array representing the state of the canvas with the drawn digit.
// tensor is the TensorFlow tensor representing the data.
const tensor = tf.tensor(data).reshape([1, 28, 28, 1]);
// output is the digit prediction.
const output = model.predict(tensor);
const prediction = output.argMax(-1).dataSync()[0];
output.dispose();
tensor.dispose();
return prediction;
},
});
// Load and show the data.
const data = new MnistData();
await data.load();
await showExamples(data);
const model = getModel();
tfvis.show.modelSummary({ name: "Model Architecture", tab: "Model" }, model);
await train(model, data);
await showAccuracy(model, data);
await showConfusion(model, data);
}
document.addEventListener("DOMContentLoaded", run);
function getModel() {
const model = tf.sequential();
const IMAGE_WIDTH = 28;
const IMAGE_HEIGHT = 28;
const IMAGE_CHANNELS = 1;
// In the first layer of our convolutional neural network we have
// to specify the input shape. Then we specify some parameters for
// the convolution operation that takes place in this layer.
model.add(
tf.layers.conv2d({
inputShape: [IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS],
kernelSize: 5,
filters: 8,
strides: 1,
activation: "relu",
kernelInitializer: "varianceScaling",
})
);
// The MaxPooling layer acts as a sort of downsampling using max values
// in a region instead of averaging.
model.add(tf.layers.maxPooling2d({ poolSize: [2, 2], strides: [2, 2] }));
// Repeat another conv2d + maxPooling stack.
// Note that we have more filters in the convolution.
model.add(
tf.layers.conv2d({
kernelSize: 5,
filters: 16,
strides: 1,
activation: "relu",
kernelInitializer: "varianceScaling",
})
);
model.add(tf.layers.maxPooling2d({ poolSize: [2, 2], strides: [2, 2] }));
// Now we flatten the output from the 2D filters into a 1D vector to prepare
// it for input into our last layer. This is common practice when feeding
// higher dimensional data to a final classification output layer.
model.add(tf.layers.flatten());
// Our last layer is a dense layer which has 10 output units, one for each
// output class (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
const NUM_OUTPUT_CLASSES = 10;
model.add(
tf.layers.dense({
units: NUM_OUTPUT_CLASSES,
kernelInitializer: "varianceScaling",
activation: "softmax",
})
);
// Choose an optimizer, loss function and accuracy metric,
// then compile and return the model
const optimizer = tf.train.adam();
model.compile({
optimizer: optimizer,
loss: "categoricalCrossentropy",
metrics: ["accuracy"],
});
return model;
}
async function train(model, data) {
const metrics = ["loss", "val_loss", "acc", "val_acc"];
const container = {
name: "Model Training",
tab: "Model",
styles: { height: "1000px" },
};
const fitCallbacks = tfvis.show.fitCallbacks(container, metrics);
const BATCH_SIZE = 512;
const TRAIN_DATA_SIZE = 5500;
const TEST_DATA_SIZE = 1000;
const [trainXs, trainYs] = tf.tidy(() => {
const d = data.nextTrainBatch(TRAIN_DATA_SIZE);
return [d.xs.reshape([TRAIN_DATA_SIZE, 28, 28, 1]), d.labels];
});
const [testXs, testYs] = tf.tidy(() => {
const d = data.nextTestBatch(TEST_DATA_SIZE);
return [d.xs.reshape([TEST_DATA_SIZE, 28, 28, 1]), d.labels];
});
return model.fit(trainXs, trainYs, {
batchSize: BATCH_SIZE,
validationData: [testXs, testYs],
epochs: 10,
shuffle: true,
callbacks: fitCallbacks,
});
}
const classNames = [
"Zero",
"One",
"Two",
"Three",
"Four",
"Five",
"Six",
"Seven",
"Eight",
"Nine",
];
function doPrediction(model, data, testDataSize = 500) {
const IMAGE_WIDTH = 28;
const IMAGE_HEIGHT = 28;
const testData = data.nextTestBatch(testDataSize);
const testxs = testData.xs.reshape([
testDataSize,
IMAGE_WIDTH,
IMAGE_HEIGHT,
1,
]);
const labels = testData.labels.argMax(-1);
const preds = model.predict(testxs).argMax(-1);
testxs.dispose();
return [preds, labels];
}
async function showAccuracy(model, data) {
const [preds, labels] = doPrediction(model, data);
const classAccuracy = await tfvis.metrics.perClassAccuracy(labels, preds);
const container = { name: "Accuracy", tab: "Evaluation" };
tfvis.show.perClassAccuracy(container, classAccuracy, classNames);
labels.dispose();
}
async function showConfusion(model, data) {
const [preds, labels] = doPrediction(model, data);
const confusionMatrix = await tfvis.metrics.confusionMatrix(labels, preds);
const container = { name: "Confusion Matrix", tab: "Evaluation" };
tfvis.render.confusionMatrix(container, {
values: confusionMatrix,
tickLabels: classNames,
});
labels.dispose();
}