-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathsem3d_test_backproj.py
118 lines (97 loc) · 3.91 KB
/
sem3d_test_backproj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import os
# from plyfile import PlyData, PlyElement
import scipy.misc
import pickle
from tqdm import *
import shutil
import json
print("Loading configuration file")
# Training settings
import argparse
parser = argparse.ArgumentParser(description='Semantic3D')
parser.add_argument('--config', type=str, default="config.json", metavar='N',
help='config file')
args = parser.parse_args()
json_data=open(args.config).read()
config = json.loads(json_data)
filenames = [
"birdfountain_station1_xyz_intensity_rgb",
"castleblatten_station1_intensity_rgb",
"castleblatten_station5_xyz_intensity_rgb",
"marketplacefeldkirch_station1_intensity_rgb",
"marketplacefeldkirch_station4_intensity_rgb",
"marketplacefeldkirch_station7_intensity_rgb",
"sg27_station10_intensity_rgb",
"sg27_station3_intensity_rgb",
"sg27_station6_intensity_rgb",
"sg27_station8_intensity_rgb",
"sg28_station2_intensity_rgb",
"sg28_station5_xyz_intensity_rgb",
"stgallencathedral_station1_intensity_rgb",
"stgallencathedral_station3_intensity_rgb",
"stgallencathedral_station6_intensity_rgb"
]
imsize = config["imsize"]
directory = config["test_results_root_dir"]
voxels_directory = os.path.join(directory,"voxels")
dir_images = os.path.join(directory,config["images_dir"])
saver_directory_rgb = config["saver_directory_rgb"]
saver_directory_composite = config["saver_directory_composite"]
saver_directory_fusion = config["saver_directory_fusion"]
label_nbr = config["label_nbr"]
batch_size = config["batch_size"]
input_ch = config["input_ch"]
save_dir = config["output_directory"]
backend = config["backend"]
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if backend == "tensorflow":
import tensorflow as tf
from python.tf.tensorflow_tester_backprojeter import BackProjeter
import python.tf.models.tensorflow_unet as model
import python.tf.models.tensorflow_residual_fusion as model_fusion
backproj = BackProjeter(model.model, model.model, model_fusion.model)
for filename in filenames:
backproj.backProj(
filename=filename,
label_nbr=label_nbr,
dir_data=voxels_directory,
dir_images=dir_images,
imsize=imsize,
input_ch=input_ch,
batch_size=batch_size,
saver_directory1=saver_directory_rgb,
saver_directory2=saver_directory_composite,
saver_directoryFusion=saver_directory_fusion,
images_root1="rgb",
images_root2="composite",
variable_scope1="rgb",
variable_scope2="composite",
variable_scope_fusion="fusion")
backproj.saveScores(os.path.join(save_dir, filename+"_scores"))
backproj.createLabelPLY(filename, dir_data=voxels_directory, save_dir=save_dir)
if backend == "pytorch":
from python.pytorch.pytorch_tester_backprojeter import BackProjeter
from python.pytorch.models.net_unet import unet as model
from python.pytorch.models.net_fusion import fusion_net as model_fusion
backproj = BackProjeter(model, model, model_fusion)
for filename in filenames:
backproj.backProj(
filename=filename,
label_nbr=label_nbr,
dir_mesh=voxels_directory,
dir_images=dir_images,
imsize=imsize,
input_ch=input_ch,
batch_size=batch_size,
saver_directory1=saver_directory_rgb,
saver_directory2=saver_directory_composite,
saver_directoryFusion=saver_directory_fusion,
images_root1="rgb",
images_root2="composite",
variable_scope1="rgb",
variable_scope2="composite",
variable_scope_fusion="fusion")
backproj.saveScores(os.path.join(save_dir, filename+"_scores.txt"))
backproj.saveSemantizedCloud(filename, voxels_directory, save_dir)