generated from abiola814/bbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rrt_star.py
216 lines (168 loc) · 6.68 KB
/
rrt_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Path planning Sample Code with RRT*
author: Atsushi Sakai(@Atsushi_twi)
"""
import math
import os
import sys
import matplotlib.pyplot as plt
sys.path.append(os.path.dirname(os.path.abspath(__file__)) +
"/../RRT/")
try:
from rrt import RRT
except ImportError:
raise
show_animation = True
class RRTStar(RRT):
"""
Class for RRT Star planning
"""
class Node(RRT.Node):
def __init__(self, x, y):
super().__init__(x, y)
self.cost = 0.0
def __init__(self, start, goal, obstacle_list, rand_area,
expand_dis=30.0,
path_resolution=1.0,
goal_sample_rate=20,
max_iter=300,
connect_circle_dist=50.0
):
super().__init__(start, goal, obstacle_list,
rand_area, expand_dis, path_resolution, goal_sample_rate, max_iter)
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
"""
self.connect_circle_dist = connect_circle_dist
self.goal_node = self.Node(goal[0], goal[1])
def planning(self, animation=True, search_until_max_iter=True):
"""
rrt star path planning
animation: flag for animation on or off
search_until_max_iter: search until max iteration for path improving or not
"""
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd, self.expand_dis)
if self.check_collision(new_node, self.obstacle_list):
near_inds = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_inds)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_inds)
if animation and i % 5 == 0:
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index is not None:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index is not None:
return self.generate_final_course(last_index)
return None
def choose_parent(self, new_node, near_inds):
if not near_inds:
return None
# search nearest cost in near_inds
costs = []
for i in near_inds:
near_node = self.node_list[i]
t_node = self.steer(near_node, new_node)
if t_node and self.check_collision(t_node, self.obstacle_list):
costs.append(self.calc_new_cost(near_node, new_node))
else:
costs.append(float("inf")) # the cost of collision node
min_cost = min(costs)
if min_cost == float("inf"):
print("There is no good path.(min_cost is inf)")
return None
min_ind = near_inds[costs.index(min_cost)]
new_node = self.steer(self.node_list[min_ind], new_node)
new_node.parent = self.node_list[min_ind]
new_node.cost = min_cost
return new_node
def search_best_goal_node(self):
dist_to_goal_list = [self.calc_dist_to_goal(n.x, n.y) for n in self.node_list]
goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.expand_dis]
safe_goal_inds = []
for goal_ind in goal_inds:
t_node = self.steer(self.node_list[goal_ind], self.goal_node)
if self.check_collision(t_node, self.obstacle_list):
safe_goal_inds.append(goal_ind)
if not safe_goal_inds:
return None
min_cost = min([self.node_list[i].cost for i in safe_goal_inds])
for i in safe_goal_inds:
if self.node_list[i].cost == min_cost:
return i
return None
def find_near_nodes(self, new_node):
nnode = len(self.node_list) + 1
r = self.connect_circle_dist * math.sqrt((math.log(nnode) / nnode))
# if expand_dist exists, search vertices in a range no more than expand_dist
if hasattr(self, 'expand_dis'):
r = min(r, self.expand_dis)
dist_list = [(node.x - new_node.x) ** 2 +
(node.y - new_node.y) ** 2 for node in self.node_list]
near_inds = [dist_list.index(i) for i in dist_list if i <= r ** 2]
return near_inds
def rewire(self, new_node, near_inds):
for i in near_inds:
near_node = self.node_list[i]
edge_node = self.steer(new_node, near_node)
if not edge_node:
continue
edge_node.cost = self.calc_new_cost(new_node, near_node)
no_collision = self.check_collision(edge_node, self.obstacle_list)
improved_cost = near_node.cost > edge_node.cost
if no_collision and improved_cost:
self.node_list[i] = edge_node
self.propagate_cost_to_leaves(new_node)
def calc_new_cost(self, from_node, to_node):
d, _ = self.calc_distance_and_angle(from_node, to_node)
return from_node.cost + d
def propagate_cost_to_leaves(self, parent_node):
for node in self.node_list:
if node.parent == parent_node:
node.cost = self.calc_new_cost(parent_node, node)
self.propagate_cost_to_leaves(node)
def main():
print("Start " + __file__)
# ====Search Path with RRT====
obstacle_list = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2),
(8, 10, 1),
(6, 12, 1),
] # [x,y,size(radius)]
# Set Initial parameters
rrt_star = RRTStar(start=[0, 0],
goal=[6, 10],
rand_area=[-2, 15],
obstacle_list=obstacle_list)
path = rrt_star.planning(animation=show_animation)
if path is None:
print("Cannot find path")
else:
print("found path!!")
# Draw final path
if show_animation:
rrt_star.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()
if __name__ == '__main__':
main()