forked from seann999/hsr_pybullet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_agent.py
204 lines (159 loc) · 5.44 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from hsr_env import GraspEnv
import pybullet as p
import numpy as np
import pfrl
import torch
import torch.nn as nn
from fcn_model import FCN
import logging
import sys
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import argparse
import os
import yaml
import functools
import traceback
def show_viz(x, out, look_out):
out_np = out.detach().cpu().numpy()
f = np.vstack([np.hstack([out_np[0, i, :, :] for i in range(x * 4, (x + 1) * 4)]) for x in range(4)])
plt.clf()
plt.subplot(131)
action = out_np[0].flatten().argmax()
res = 224
loc_idx = action % (res * res)
px_y = int(loc_idx / res)
px_x = int(loc_idx % res)
plt.title('input heightmap')
plt.imshow(x.cpu().numpy()[0, 0])
plt.plot([px_x], [px_y], '*r')
plt.subplot(132)
plt.imshow(f)
plt.colorbar()
plt.subplot(133)
plt.imshow(look_out.detach().cpu().numpy()[0, 0])
plt.colorbar()
plt.gcf().set_size_inches(20, 8)
plt.tight_layout()
#plt.show()
plt.savefig('debug.png')
#input('waiting')
class QFCN(nn.Module):
def __init__(self, debug=False, pretrain=None, pick_only=False):
super().__init__()
rots = 16
self.grasp_model = FCN(rots, fast=False)
self.look_model = FCN(1, fast=True)
self.debug = debug
self.last_output = None
self.pick_only = pick_only
if pretrain:
self.grasp_model.load_state_dict(torch.load(pretrain))
def forward(self, x):
x, grasping = x
# print('inference:', x.shape)
bs = len(x)
#if grasping > 0:
place_out = torch.zeros((bs, 18, 224, 224)).cuda()
place_out[:, 17, 112, 37] = 1
place_out = place_out.view(bs, -1)
#else:
out = self.grasp_model(x)
look_out = self.look_model(x)
if self.pick_only:
look_out *= 0
if self.debug:
show_viz(x, out, look_out)
self.last_output = [out.detach().cpu().numpy(), look_out.detach().cpu().numpy()]
out = torch.cat([out, look_out], 1)
pad = torch.zeros_like(look_out)
out = torch.cat([out, pad], 1)
out = out.reshape(bs, -1) # N x RHW
place = (grasping > 0).unsqueeze(1)
out = torch.where(place, place_out, out)
return pfrl.action_value.DiscreteActionValue(out)
def args2config(args):
return {
'depth_noise': args.depth_noise,
'rot_noise': args.rot_noise,
'action_grasp': True,
'action_look': True,
'spawn_mode': 'circle',
'res': 224,
'rots': 16,
}
def phi(x):
# normalize heightmap
return (x[0] - 0.2) / 0.2, x[1]
def make_env(idx, config):
env = GraspEnv(connect=p.DIRECT, config=config, check_object_collision=False, random_hand=False)
env.set_seed(idx)
return env
def make_batch_env(config, n_envs=64):
vec_env = pfrl.envs.MultiprocessVectorEnv([
functools.partial(make_env, idx, config)
for idx, env in enumerate(range(n_envs))
])
return vec_env
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='result/test00')
parser.add_argument('--load-agent', type=str, default=None)
parser.add_argument('--depth-noise', action='store_true')
parser.add_argument('--rot-noise', action='store_true')
parser.add_argument('--test-run', action='store_true')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--pick-only', action='store_true')
args = parser.parse_args()
config = args2config(args)
try:
os.makedirs(args.outdir)
except FileExistsError:
pass
with open(os.path.join(args.outdir, 'config.yaml'), 'w') as file:
yaml.dump(config, file)
# eval_env = GraspEnv(connect=p.DIRECT, config=config)
# eval_env = GraspEnv(check_visibility=True, connect=p.DIRECT)
env = make_batch_env(config, 48)
q_func = QFCN(pretrain=args.pretrain, pick_only=args.pick_only)
k = 4
gamma = 0 if args.pick_only else 0.5
explorer = pfrl.explorers.LinearDecayEpsilonGreedy(
0.5, 0.1, 4000 * k, random_action_func=GraspEnv.random_action_sample_fn(config, False))
# optimizer = torch.optim.Adam(q_func.parameters(), lr=1e-4)
optimizer = torch.optim.SGD(q_func.parameters(), lr=1e-4, momentum=0.9, weight_decay=2e-5)
replay_buffer = pfrl.replay_buffers.PrioritizedReplayBuffer(capacity=10000, betasteps=40000 * k)
#replay_buffer = pfrl.replay_buffers.ReplayBuffer(10000, 1)
gpu = 0
agent = pfrl.agents.DoubleDQN(
q_func,
optimizer,
replay_buffer,
gamma,
explorer,
replay_start_size=16 if args.test_run else 1000 * k,
update_interval=k,
target_update_interval=k if args.pick_only else 250 * k,
minibatch_size=8 if args.test_run else 8,
gpu=gpu,
phi=phi,
max_grad_norm=100,
)
if args.load_agent is not None:
agent.load(args.load_agent)
logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')
pfrl.experiments.train_agent_batch_with_evaluation(
agent,
env=env,
steps=40000 * k,
log_interval=1000,
eval_n_steps=None,
eval_n_episodes=10,
max_episode_len=1 if args.pick_only else 10,
eval_interval=1000,
outdir=args.outdir,
save_best_so_far_agent=True,
# eval_env=eval_env,
)
print('Finished.')