-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdetect_faces_video.py
59 lines (47 loc) · 2.09 KB
/
detect_faces_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# import libraries
import cv2
import time
import imutils
import numpy as np
from imutils.video import VideoStream
# load serialized model from disk and initialize the video stream
net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt','res10_300x300_ssd_iter_140000.caffemodel')
vs = VideoStream(src=0).start()
time.sleep(2.0)
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is greater than the minimum confidence
# you can also change the 'confidence' (0.5 here) for better results
if confidence < 0.5:
continue
# compute the (x,y) coordinates of the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output frame
cv2.imshow("Frame", frame)
# Close windows with Esc
key = cv2.waitKey(1) & 0xFF
# break the loop if ESC key is pressed
if key == 27:
break
# destroy all the windows
cv2.destroyAllWindows()
vs.stop()