forked from ndrplz/self-driving-car
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
156 lines (115 loc) · 6.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import os
import matplotlib.pyplot as plt
from calibration_utils import calibrate_camera, undistort
from binarization_utils import binarize
from perspective_utils import birdeye
from line_utils import get_fits_by_sliding_windows, draw_back_onto_the_road, Line, get_fits_by_previous_fits
from moviepy.editor import VideoFileClip
import numpy as np
from globals import xm_per_pix, time_window
processed_frames = 0 # counter of frames processed (when processing video)
line_lt = Line(buffer_len=time_window) # line on the left of the lane
line_rt = Line(buffer_len=time_window) # line on the right of the lane
def prepare_out_blend_frame(blend_on_road, img_binary, img_birdeye, img_fit, line_lt, line_rt, offset_meter):
"""
Prepare the final pretty pretty output blend, given all intermediate pipeline images
:param blend_on_road: color image of lane blend onto the road
:param img_binary: thresholded binary image
:param img_birdeye: bird's eye view of the thresholded binary image
:param img_fit: bird's eye view with detected lane-lines highlighted
:param line_lt: detected left lane-line
:param line_rt: detected right lane-line
:param offset_meter: offset from the center of the lane
:return: pretty blend with all images and stuff stitched
"""
h, w = blend_on_road.shape[:2]
thumb_ratio = 0.2
thumb_h, thumb_w = int(thumb_ratio * h), int(thumb_ratio * w)
off_x, off_y = 20, 15
# add a gray rectangle to highlight the upper area
mask = blend_on_road.copy()
mask = cv2.rectangle(mask, pt1=(0, 0), pt2=(w, thumb_h+2*off_y), color=(0, 0, 0), thickness=cv2.FILLED)
blend_on_road = cv2.addWeighted(src1=mask, alpha=0.2, src2=blend_on_road, beta=0.8, gamma=0)
# add thumbnail of binary image
thumb_binary = cv2.resize(img_binary, dsize=(thumb_w, thumb_h))
thumb_binary = np.dstack([thumb_binary, thumb_binary, thumb_binary]) * 255
blend_on_road[off_y:thumb_h+off_y, off_x:off_x+thumb_w, :] = thumb_binary
# add thumbnail of bird's eye view
thumb_birdeye = cv2.resize(img_birdeye, dsize=(thumb_w, thumb_h))
thumb_birdeye = np.dstack([thumb_birdeye, thumb_birdeye, thumb_birdeye]) * 255
blend_on_road[off_y:thumb_h+off_y, 2*off_x+thumb_w:2*(off_x+thumb_w), :] = thumb_birdeye
# add thumbnail of bird's eye view (lane-line highlighted)
thumb_img_fit = cv2.resize(img_fit, dsize=(thumb_w, thumb_h))
blend_on_road[off_y:thumb_h+off_y, 3*off_x+2*thumb_w:3*(off_x+thumb_w), :] = thumb_img_fit
# add text (curvature and offset info) on the upper right of the blend
mean_curvature_meter = np.mean([line_lt.curvature_meter, line_rt.curvature_meter])
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(blend_on_road, 'Curvature radius: {:.02f}m'.format(mean_curvature_meter), (860, 60), font, 0.9, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(blend_on_road, 'Offset from center: {:.02f}m'.format(offset_meter), (860, 130), font, 0.9, (255, 255, 255), 2, cv2.LINE_AA)
return blend_on_road
def compute_offset_from_center(line_lt, line_rt, frame_width):
"""
Compute offset from center of the inferred lane.
The offset from the lane center can be computed under the hypothesis that the camera is fixed
and mounted in the midpoint of the car roof. In this case, we can approximate the car's deviation
from the lane center as the distance between the center of the image and the midpoint at the bottom
of the image of the two lane-lines detected.
:param line_lt: detected left lane-line
:param line_rt: detected right lane-line
:param frame_width: width of the undistorted frame
:return: inferred offset
"""
if line_lt.detected and line_rt.detected:
line_lt_bottom = np.mean(line_lt.all_x[line_lt.all_y > 0.95 * line_lt.all_y.max()])
line_rt_bottom = np.mean(line_rt.all_x[line_rt.all_y > 0.95 * line_rt.all_y.max()])
lane_width = line_rt_bottom - line_lt_bottom
midpoint = frame_width / 2
offset_pix = abs((line_lt_bottom + lane_width / 2) - midpoint)
offset_meter = xm_per_pix * offset_pix
else:
offset_meter = -1
return offset_meter
def process_pipeline(frame, keep_state=True):
"""
Apply whole lane detection pipeline to an input color frame.
:param frame: input color frame
:param keep_state: if True, lane-line state is conserved (this permits to average results)
:return: output blend with detected lane overlaid
"""
global line_lt, line_rt, processed_frames
# undistort the image using coefficients found in calibration
img_undistorted = undistort(frame, mtx, dist, verbose=False)
# binarize the frame s.t. lane lines are highlighted as much as possible
img_binary = binarize(img_undistorted, verbose=False)
# compute perspective transform to obtain bird's eye view
img_birdeye, M, Minv = birdeye(img_binary, verbose=False)
# fit 2-degree polynomial curve onto lane lines found
if processed_frames > 0 and keep_state and line_lt.detected and line_rt.detected:
line_lt, line_rt, img_fit = get_fits_by_previous_fits(img_birdeye, line_lt, line_rt, verbose=False)
else:
line_lt, line_rt, img_fit = get_fits_by_sliding_windows(img_birdeye, line_lt, line_rt, n_windows=9, verbose=False)
# compute offset in meter from center of the lane
offset_meter = compute_offset_from_center(line_lt, line_rt, frame_width=frame.shape[1])
# draw the surface enclosed by lane lines back onto the original frame
blend_on_road = draw_back_onto_the_road(img_undistorted, Minv, line_lt, line_rt, keep_state)
# stitch on the top of final output images from different steps of the pipeline
blend_output = prepare_out_blend_frame(blend_on_road, img_binary, img_birdeye, img_fit, line_lt, line_rt, offset_meter)
processed_frames += 1
return blend_output
if __name__ == '__main__':
# first things first: calibrate the camera
ret, mtx, dist, rvecs, tvecs = calibrate_camera(calib_images_dir='camera_cal')
mode = 'images'
if mode == 'video':
selector = 'project'
clip = VideoFileClip('{}_video.mp4'.format(selector)).fl_image(process_pipeline)
clip.write_videofile('out_{}_{}.mp4'.format(selector, time_window), audio=False)
else:
test_img_dir = 'test_images'
for test_img in os.listdir(test_img_dir):
frame = cv2.imread(os.path.join(test_img_dir, test_img))
blend = process_pipeline(frame, keep_state=False)
cv2.imwrite('output_images/{}'.format(test_img), blend)
plt.imshow(cv2.cvtColor(blend, code=cv2.COLOR_BGR2RGB))
plt.show()