forked from abeardear/pytorch-YOLO-v1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_voc.py
206 lines (190 loc) · 7.6 KB
/
eval_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#encoding:utf-8
#
#created by xiongzihua
#
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import numpy as np
VOC_CLASSES = ( # always index 0
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
Color = [[0, 0, 0],
[128, 0, 0],
[0, 128, 0],
[128, 128, 0],
[0, 0, 128],
[128, 0, 128],
[0, 128, 128],
[128, 128, 128],
[64, 0, 0],
[192, 0, 0],
[64, 128, 0],
[192, 128, 0],
[64, 0, 128],
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0],
[0, 64, 128]]
def voc_ap(rec,prec,use_07_metric=False):
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0.,1.1,0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec>=t])
ap = ap + p/11.
else:
# correct ap caculation
mrec = np.concatenate(([0.],rec,[1.]))
mpre = np.concatenate(([0.],prec,[0.]))
for i in range(mpre.size -1, 0, -1):
mpre[i-1] = np.maximum(mpre[i-1],mpre[i])
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def voc_eval(preds,target,VOC_CLASSES=VOC_CLASSES,threshold=0.5,use_07_metric=False,):
'''
preds {'cat':[[image_id,confidence,x1,y1,x2,y2],...],'dog':[[],...]}
target {(image_id,class):[[],]}
'''
aps = []
for i,class_ in enumerate(VOC_CLASSES):
pred = preds[class_] #[[image_id,confidence,x1,y1,x2,y2],...]
if len(pred) == 0: #如果这个类别一个都没有检测到的异常情况
ap = -1
print('---class {} ap {}---'.format(class_,ap))
aps += [ap]
break
#print(pred)
image_ids = [x[0] for x in pred]
confidence = np.array([float(x[1]) for x in pred])
BB = np.array([x[2:] for x in pred])
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
npos = 0.
for (key1,key2) in target:
if key2 == class_:
npos += len(target[(key1,key2)]) #统计这个类别的正样本,在这里统计才不会遗漏
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d,image_id in enumerate(image_ids):
bb = BB[d] #预测框
if (image_id,class_) in target:
BBGT = target[(image_id,class_)] #[[],]
for bbgt in BBGT:
# compute overlaps
# intersection
ixmin = np.maximum(bbgt[0], bb[0])
iymin = np.maximum(bbgt[1], bb[1])
ixmax = np.minimum(bbgt[2], bb[2])
iymax = np.minimum(bbgt[3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
union = (bb[2]-bb[0]+1.)*(bb[3]-bb[1]+1.) + (bbgt[2]-bbgt[0]+1.)*(bbgt[3]-bbgt[1]+1.) - inters
if union == 0:
print(bb,bbgt)
overlaps = inters/union
if overlaps > threshold:
tp[d] = 1
BBGT.remove(bbgt) #这个框已经匹配到了,不能再匹配
if len(BBGT) == 0:
del target[(image_id,class_)] #删除没有box的键值
break
fp[d] = 1-tp[d]
else:
fp[d] = 1
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp/float(npos)
prec = tp/np.maximum(tp + fp, np.finfo(np.float64).eps)
#print(rec,prec)
ap = voc_ap(rec, prec, use_07_metric)
print('---class {} ap {}---'.format(class_,ap))
aps += [ap]
print('---map {}---'.format(np.mean(aps)))
def test_eval():
preds = {'cat':[['image01',0.9,20,20,40,40],['image01',0.8,20,20,50,50],['image02',0.8,30,30,50,50]],'dog':[['image01',0.78,60,60,90,90]]}
target = {('image01','cat'):[[20,20,41,41]],('image01','dog'):[[60,60,91,91]],('image02','cat'):[[30,30,51,51]]}
voc_eval(preds,target,VOC_CLASSES=['cat','dog'])
if __name__ == '__main__':
#test_eval()
from predict import *
from collections import defaultdict
from tqdm import tqdm
target = defaultdict(list)
preds = defaultdict(list)
image_list = [] #image path list
f = open('voc2007test.txt')
lines = f.readlines()
file_list = []
for line in lines:
splited = line.strip().split()
file_list.append(splited)
f.close()
print('---prepare target---')
for index,image_file in enumerate(file_list):
image_id = image_file[0]
image_list.append(image_id)
num_obj = (len(image_file) - 1) // 5
for i in range(num_obj):
x1 = int(image_file[1+5*i])
y1 = int(image_file[2+5*i])
x2 = int(image_file[3+5*i])
y2 = int(image_file[4+5*i])
c = int(image_file[5+5*i])
class_name = VOC_CLASSES[c]
target[(image_id,class_name)].append([x1,y1,x2,y2])
#
#start test
#
print('---start test---')
# model = vgg16_bn(pretrained=False)
model = resnet50()
# model.classifier = nn.Sequential(
# nn.Linear(512 * 7 * 7, 4096),
# nn.ReLU(True),
# nn.Dropout(),
# #nn.Linear(4096, 4096),
# #nn.ReLU(True),
# #nn.Dropout(),
# nn.Linear(4096, 1470),
# )
model.load_state_dict(torch.load('best.pth'))
model.eval()
model.cuda()
count = 0
for image_path in tqdm(image_list):
result = predict_gpu(model,image_path,root_path='/home/xzh/data/VOCdevkit/VOC2012/allimgs/') #result[[left_up,right_bottom,class_name,image_path],]
for (x1,y1),(x2,y2),class_name,image_id,prob in result: #image_id is actually image_path
preds[class_name].append([image_id,prob,x1,y1,x2,y2])
# print(image_path)
# image = cv2.imread('/home/xzh/data/VOCdevkit/VOC2012/allimgs/'+image_path)
# for left_up,right_bottom,class_name,_,prob in result:
# color = Color[VOC_CLASSES.index(class_name)]
# cv2.rectangle(image,left_up,right_bottom,color,2)
# label = class_name+str(round(prob,2))
# text_size, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.4, 1)
# p1 = (left_up[0], left_up[1]- text_size[1])
# cv2.rectangle(image, (p1[0] - 2//2, p1[1] - 2 - baseline), (p1[0] + text_size[0], p1[1] + text_size[1]), color, -1)
# cv2.putText(image, label, (p1[0], p1[1] + baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, 8)
# cv2.imwrite('testimg/'+image_path,image)
# count += 1
# if count == 100:
# break
print('---start evaluate---')
voc_eval(preds,target,VOC_CLASSES=VOC_CLASSES)