-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate.py
90 lines (71 loc) · 2.58 KB
/
calculate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import math
import common
import numpy as np
class Calculate:
def __init__(self, node1, node2):
self.node1 = common.Node(node1[0], node1[1])
self.node2 = common.Node(node2[0], node2[1])
# print("调用Calculate构造函数")
# def cmin_cal(self):
# cMin = math.sqrt(pow(self.start.x - self.goal.x, 2)
# + pow(self.start.y - self.goal.y, 2))
# return cMin
# def xcenter_cal(self, cMin):
# xCenter = np.array([
# [(self.start.x + self.goal.x) / 2.0],
# [(self.start.y + self.goal.y) / 2.0],
# [0]]) # 写成3维的形式
#
# return xCenter
# def theta_cal(self):
# a1 = np.array([
# [(self.goal.x - self.start.x) / self.cmin_cal()],
# [(self.goal.y - self.start.y) / self.cmin_cal()],
# [0]])
# e_theta = math.atan2(a1[1], a1[0])
#
# return e_theta
# def cmin_common_cal(self):
#
# cMin = math.sqrt(pow(self.node1.x - self.node2.x, 2)
# + pow(self.node1.y - self.node2.y, 2))
# return cMin
#
# def xcenter_common_cal(self):
# xCenter = np.array([
# [(self.node1.x + self.node2.x) / 2.0],
# [(self.node1.y + self.node2.y) / 2.0],
# [0]]) # 写成3维的形式
#
# return xCenter
#
def theta_common_cal(self):
a1 = np.array([
[(self.node2.x - self.node1.x) / self.cmin_common_cal(self.node1, self.node2)],
[(self.node2.y - self.node1.y) / self.cmin_common_cal(self.node1, self.node2)],
[0]])
e_theta = math.atan2(a1[1], a1[0])
return e_theta
# ----------------------------想使用静态方法staticmethod
@staticmethod
def cmin_common_cal(node1, node2): # 使用staticmethod,形参不能加self
cMin = math.sqrt(pow(node1.x - node2.x, 2)
+ pow(node1.y - node2.y, 2))
return cMin
@staticmethod
def xcenter_common_cal(node1, node2):
xCenter = np.array([
[(node1.x + node2.x) / 2.0],
[(node1.y + node2.y) / 2.0],
[0]]) # 写成3维的形式
return xCenter
# @staticmethod
# def theta_common_cal(node1, node2):
# M = Calculate(node1, node2)
# a1 = np.array([
# [(node2.x - node1.x) / M.cmin_common_cal(node1, node2)],
# [(node2.y - node1.y) / M.cmin_common_cal(node1, node2)],
# [0]])
# e_theta = math.atan2(a1[1], a1[0])
#
# return e_theta