-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsha.hpp
280 lines (245 loc) · 11.3 KB
/
sha.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// Copyright © 2023 ZeroPass <[email protected]>
// Author: Crt Vavros
#pragma once
#include <array>
#include <cstdint>
#include <vector>
#include <ack/types.hpp>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
namespace ack {
namespace internal_do_not_use {
static_assert( sizeof( uint32_t ) == 4, "uint32_t must be 4 bytes" );
static_assert( sizeof( uint64_t ) == 8, "uint64_t must be 8 bytes" );
constexpr inline size_t sha384_hash_size = 48;
using sha384_hash = fixed_bytes<sha384_hash_size>;
constexpr inline size_t sha512_block_size = 128;
constexpr inline size_t sha512_hash_size = 64;
constexpr inline size_t sha512_padblock_size = 16;
constexpr inline size_t sha512_rounds = 80;
using sha512_word_t = uint64_t;
using sha512_hash = fixed_bytes<sha512_hash_size>;
using sha512_word_hash = std::array<sha512_word_t, 8>;
// NIST FIPS 180-4 Section 5.3.4 SHA-384
constexpr inline sha512_word_hash sha384_initial_hash_values = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
constexpr sha512_word_t K_512[80] = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
};
constexpr inline void write_u64le(byte_t* dest, uint64_t x)
{
*dest++ = ( x >> 56 ) & 0xff;
*dest++ = ( x >> 48 ) & 0xff;
*dest++ = ( x >> 40 ) & 0xff;
*dest++ = ( x >> 32 ) & 0xff;
*dest++ = ( x >> 24 ) & 0xff;
*dest++ = ( x >> 16 ) & 0xff;
*dest++ = ( x >> 8 ) & 0xff;
*dest++ = ( x >> 0 ) & 0xff;
}
constexpr inline uint32_t read_u32be(const byte_t* src)
{
return static_cast<uint32_t>(
( src[0] << 24 ) |
( src[1] << 16 ) |
( src[2] << 8 ) |
( src[3] << 0 )
);
}
constexpr inline uint64_t read_u64be(const byte_t* src)
{
uint64_t upper = read_u32be( src );
uint64_t lower = read_u32be( src + 4 );
return ( ( upper & 0xffffffff ) << 32 ) | ( lower & 0xffffffff );
}
constexpr inline uint64_t ROTR(uint64_t x, uint64_t n)
{
// A compiler-recognised implementation of rotate right that avoids the
// undefined behaviour caused by shifting by the number of bits of the left-hand
// type. See John Regehr's article https://blog.regehr.org/archives/1063
return ( x >> n ) | ( x << ( -n & 63 ));
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
constexpr inline uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) {
return ( x & y ) ^ ( ~x & z );
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
constexpr inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) {
return ( x & y ) ^ ( x & z ) ^ ( y & z );
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
// Defined as uppercase sigma (Σ) 0
constexpr inline uint64_t SIG0_512(uint64_t x) {
return ROTR( x, 28 ) ^ ROTR( x, 34 ) ^ ROTR( x, 39 );
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
// Defined as uppercase sigma (Σ) 1
constexpr inline uint64_t SIG1_512(uint64_t x) {
return ROTR( x, 14 ) ^ ROTR( x, 18 ) ^ ROTR( x, 41 );
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
// Defined as lowercase sigma (σ) 0
constexpr inline uint64_t sig0_512(uint64_t x) {
return ROTR( x, 1 ) ^ ROTR( x, 8 ) ^ ( x >> 7 );
}
// NIST FIPS 180-4 Section 4.1.3 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions"
// Defined as lowercase sigma (σ) 1
constexpr inline uint64_t sig1_512(uint64_t x) {
return ROTR( x, 19 ) ^ ROTR( x, 61 ) ^ ( x >> 6 );
}
constexpr inline void sha512_prepare(sha512_word_t* W, size_t t) {
// Note: Don't change order of addition (cache miss optimization)
W[t] = W[t - 7] + W[t - 16] + sig0_512( W[t - 15] ) + sig1_512( W[t - 2] ) ;
}
template <size_t R, size_t N>
[[nodiscard]] constexpr inline fixed_bytes<R> truncate(const fixed_bytes<N>& hash)
{
static_assert( R <= N );
fixed_bytes<R> thash;
memcpy( thash.data(), hash.data(), R );
return thash;
}
constexpr inline void sha512_compress(const byte_t* data, sha512_word_hash& H)
{
sha512_word_t W[sha512_rounds] = {0};
for ( int t = 0; t < 16; t++ ) {
W[t] = read_u64be(&data[t * sizeof( sha512_word_t )]);
}
// partial loop unroll
for ( size_t t = 16; t < sha512_rounds; t += 16 ) {
sha512_prepare( W, t ); sha512_prepare( W, t + 1 );
sha512_prepare( W, t + 2 ); sha512_prepare( W, t + 3 );
sha512_prepare( W, t + 4 ); sha512_prepare( W, t + 5 );
sha512_prepare( W, t + 6 ); sha512_prepare( W, t + 7 );
sha512_prepare( W, t + 8 ); sha512_prepare( W, t + 9 );
sha512_prepare( W, t + 10 ); sha512_prepare( W, t + 11 );
sha512_prepare( W, t + 12 ); sha512_prepare( W, t + 13 );
sha512_prepare( W, t + 14 ); sha512_prepare( W, t + 15 );
}
auto a = H[0];
auto b = H[1];
auto c = H[2];
auto d = H[3];
auto e = H[4];
auto f = H[5];
auto g = H[6];
auto h = H[7];
const auto round = [&](size_t t) {
// Note: Don't change order of addition (cache miss optimization)
const auto T1 = Ch( e, f, g ) + W[t] + K_512[t] + h + SIG1_512( e );
const auto T2 = Maj( a, b, c ) + SIG0_512( a );
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
};
// partial loop unroll
for ( size_t t = 0; t < sha512_rounds; t += 16 ) {
round( t ); round( t + 1 );
round( t + 2 ); round( t + 3 );
round( t + 4 ); round( t + 5 );
round( t + 6 ); round( t + 7 );
round( t + 8 ); round( t + 9 );
round( t + 10 ); round( t + 11 );
round( t + 12 ); round( t + 13 );
round( t + 14 ); round( t + 15 );
}
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
};
// NIST FIPS 180-4 Section 6.4.2 "SHA-512 Hash Computation"
// https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
[[nodiscard]] constexpr inline sha512_hash sha512_compute(const sha512_word_hash& s, const byte_t* data, uint64_t size)
{
const uint64_t bit_length_low = size << 3;
const uint64_t bit_length_high = size >> (64 - 3);
sha512_word_hash H = s;
while ( size >= sha512_block_size ) {
sha512_compress( data, H );
data += sha512_block_size;
size -= sha512_block_size;
}
// Add padding
// NIST FIPS 180-4 Section 5.1.2 "SHA-384, SHA-512, SHA-512/224 and SHA-512/256"
{
std::array<byte_t, sha512_block_size> block;
memcpy( block.data(), data, size );
auto i = size;
block[i++] = 0x80;
if ( i > sha512_block_size - sha512_padblock_size ) {
while (i < sha512_block_size) {
block[i++] = 0;
}
sha512_compress( block.data(), H );
i = 0;
}
while ( i < sha512_block_size - sha512_padblock_size ) {
block[i++] = 0;
}
write_u64le( &block[i], bit_length_high );
write_u64le( &block[i + sizeof( sha512_word_t )], bit_length_low );
sha512_compress( block.data(), H );
}
// Convert to little-endian bytes
sha512_hash hash;
for ( byte_t i = 0; i < sizeof( sha512_word_t ); i++ ) {
write_u64le( &hash[i * sizeof( sha512_word_t )], H[i] );
}
return hash;
}
}
/**
* SHA-384 hash function.
* @note Implementation follows NIST FIPS-180 standard.
* https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
*
* @param data - data to hash
* @return 384-bit hash
*/
[[nodiscard]] inline hash384 sha384(const bytes_view data)
{
using namespace internal_do_not_use;
return truncate<sha384_hash_size>(
sha512_compute(sha384_initial_hash_values, data.data(), data.size())
);
}
}