forked from lukas-blecher/LaTeX-OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_resizer.py
150 lines (139 loc) · 5.62 KB
/
train_resizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.optim.lr_scheduler import OneCycleLR
from timm.models.resnetv2 import ResNetV2
from timm.models.layers import StdConv2dSame
import numpy as np
from PIL import Image
import cv2
import imagesize
import yaml
from tqdm.auto import tqdm
from utils import *
from dataset.dataset import *
from munch import Munch
import argparse
def prepare_data(dataloader):
_, ims = dataloader.pairs[dataloader.i-1].T
images = []
scale = None
c = 0
width, height = imagesize.get(ims[0])
while True:
c += 1
s = np.array([width, height])
scale = 5*(np.random.random()+.02)
if all((s*scale) <= dataloader.max_dimensions[0]) and all((s*scale) >= 16):
break
if c > 25:
return None, None
x, y = 0, 0
for path in list(ims):
im = Image.open(path)
modes = [Image.BICUBIC,
Image.BILINEAR]
if scale < 1:
modes.append(Image.LANCZOS)
m = modes[int(len(modes)*np.random.random())]
im = im.resize((int(width*scale), int(height*scale)), m)
try:
im = pad(im)
except:
return None, None
if im is None:
print(path, 'not found!')
continue
im = np.array(im)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
images.append(dataloader.transform(image=im)['image'][:1])
if images[-1].shape[-1] > x:
x = images[-1].shape[-1]
if images[-1].shape[-2] > y:
y = images[-1].shape[-2]
if x > dataloader.max_dimensions[0] or y > dataloader.max_dimensions[1]:
return None, None
for i in range(len(images)):
h, w = images[i].shape[1:]
images[i] = F.pad(images[i], (0, x-w, 0, y-h), value=0)
try:
images = torch.cat(images).float().unsqueeze(1)
except RuntimeError as e:
#print(e, 'Images not working: %s' % (' '.join(list(ims))))
return None, None
dataloader.i += 1
labels = torch.tensor(width//32-1).repeat(len(ims)).long()
return images, labels
def val(val, model, num_samples=400, device='cuda'):
model.eval()
c, t = 0, 0
iter(val)
with torch.no_grad():
for i in range(num_samples):
im, l = prepare_data(val)
if im is None:
continue
p = model(im.to(device)).argmax(-1).detach().cpu().numpy()
c += (p == l[0].item()).sum()
t += len(im)
model.train()
return c/t
def main(args):
# data
dataloader = Im2LatexDataset().load(args.data)
dataloader.update(batchsize=args.batchsize, test=False, max_dimensions=args.max_dimensions, keep_smaller_batches=True, device=args.device)
valloader = Im2LatexDataset().load(args.valdata)
valloader.update(batchsize=args.batchsize, test=True, max_dimensions=args.max_dimensions, keep_smaller_batches=True, device=args.device)
# model
model = ResNetV2(layers=[2, 3, 3], num_classes=int(max(args.max_dimensions)//32), global_pool='avg', in_chans=args.channels, drop_rate=.05,
preact=True, stem_type='same', conv_layer=StdConv2dSame).to(args.device)
if args.resume:
model.load_state_dict(torch.load(args.resume))
opt = Adam(model.parameters(), lr=args.lr)
crit = nn.CrossEntropyLoss()
sched = OneCycleLR(opt, .005, total_steps=args.num_epochs*len(dataloader))
global bestacc
bestacc = val(valloader, model, args.valbatches, args.device)
def train_epoch(sched=None):
iter(dataloader)
dset = tqdm(range(len(dataloader)))
for i in dset:
im, label = prepare_data(dataloader)
if im is not None:
if im.shape[-1] > dataloader.max_dimensions[0] or im.shape[-2] > dataloader.max_dimensions[1]:
continue
opt.zero_grad()
label = label.to(args.device)
pred = model(im.to(args.device))
loss = crit(pred, label)
if i % 2 == 0:
dset.set_description('Loss: %.4f' % loss.item())
loss.backward()
opt.step()
if sched is not None:
sched.step()
if (i+1) % args.sample_freq == 0 or i+1 == len(dset):
acc = val(valloader, model, args.valbatches, args.device)
print('Accuracy %.2f' % (100*acc), '%')
global bestacc
if acc > bestacc:
torch.save(model.state_dict(), args.out)
bestacc = acc
for _ in range(args.num_epochs):
train_epoch(sched)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train size classification model')
parser.add_argument('--config', default='settings/debug.yaml', help='path to yaml config file', type=argparse.FileType('r'))
parser.add_argument('--no_cuda', action='store_true', help='Use CPU')
parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')
parser.add_argument('--resume', help='path to checkpoint folder', type=str, default='')
parser.add_argument('--out', type=str, default='checkpoints/image_resizer.pth', help='output destination for trained model')
parser.add_argument('--num_epochs', type=int, default=10, help='number of epochs to train')
parser.add_argument('--batchsize', type=int, default=10)
parsed_args = parser.parse_args()
with parsed_args.config as f:
params = yaml.load(f, Loader=yaml.FullLoader)
args = parse_args(Munch(params), **vars(parsed_args))
args.update(**vars(parsed_args))
main(args)