-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathBP_NonLinearRegression.py
112 lines (96 loc) · 3.39 KB
/
BP_NonLinearRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#encoding=utf-8
#Date 2017.03.12
from Bp_train import *
import matplotlib.pyplot as plt
'''神经网络-非线性回归调用函数
参数:
x:训练集样本集合,numpy数组
y:训练集标签集合,numpy数组
newx:测试集样本集合,numpy数组
newy:测试集标签集合,numpy数组
d:布尔型变量,是否使用fw算法进行优化
返回值:
train_error:训练集误差,浮点型
error:测试集误差,浮点型
'''
def BP_NonLinearRegression(x, y, newx, newy, d):
x = log(x)
y = log(y)
#训练集归一化
xx = zeros([shape(x)[0], shape(x)[1]])
yy = zeros([shape(y)[0], shape(y)[1]])
for i in range(shape(x)[0]):
for j in range(shape(x)[1]):
xx[i, j] = (x[i, j] - min(x[:, j])) / (max(x[:, j] - min(x[:, j])))
for i in range(shape(y)[0]):
for j in range(shape(y)[1]):
yy[i, j] = (y[i, j] - min(y[:, j])) / (max(y[:, j] - min(y[:, j])))
#求训练集均方误差
#a为神经网络的迭代误差、EE为烟花算法的迭代误差
whj, rh, vih, thetaj, a, EE = MyBP(xx, yy, 6, d)
alphah = dot(xx, whj)
bh = sigmoid(alphah - rh)
betaj = dot(bh, vih)
NewY = sigmoid(betaj - thetaj)
NewYY = zeros([shape(NewY)[0], shape(NewY)[1]])
for i in range(shape(NewY)[0]):
for j in range(shape(NewY)[1]):
NewYY[i, j] = NewY[i, j] * (max(y[:, j] - min(y[:, j]))) + \
min(y[:, j])
NewYY = exp(NewYY)
train_error = sum((NewYY - exp(y)) * (NewYY - exp(y))) / 2
#测试集
newx = log(newx)
newxx = zeros([shape(newx)[0], shape(newx)[1]])
#测试集归一化
for i in range(shape(newx)[0]):
for j in range(shape(newx)[1]):
newxx[i, j] = (newx[i, j] - min(x[:, j])) / (max(x[:, j] - min(x[:, j])))
#神经网络预测
predict_y = predictY(newxx, whj, rh, vih, thetaj)
#预测值反归一化
newpredict_y = zeros([shape(predict_y)[0], shape(predict_y)[1]])
for i in range(shape(predict_y)[0]):
for j in range(shape(predict_y)[1]):
newpredict_y[i, j] = predict_y[i, j] * (max(y[:, j] - min(y[:, j]))) + \
min(y[:, j])
#求测试集均方误差
newpredict_y = exp(newpredict_y)
error = sum((newpredict_y - newy) * (newpredict_y - newy)) / 2
#画图
#真实值与预测值图像
fig1 = plt.figure()
ax = fig1.add_subplot(111)
#画点
ax.scatter(NewYY.flatten(), exp(y).flatten(), color = 'blue')
ax.scatter(newpredict_y.flatten(), newy.flatten(), color = 'black')
#画线
x = [0, 600]
y = [0, 600]
ax.plot(x, y, 'r')
plt.title('Nonlinear Regression + BP neural network', fontname='times new Roman', fontsize='10.5')
plt.xlabel('predictvalue', fontname='times new Roman', fontsize='10.5')
plt.ylabel('realvalue', fontname='times new Roman', fontsize='10.5')
plt.show()
#神经网络误差函数图像
fig2 = plt.figure()
bx = fig2.add_subplot(111)
x = range(200)
y = a
bx.plot(x, y)
plt.title('Error function', fontname='times new Roman', fontsize='10.5')
plt.xlabel('Number of iterations', fontname='times new Roman', fontsize='10.5')
plt.ylabel('Error', fontname='times new Roman', fontsize='10.5')
plt.show()
#烟花算法误差函数图像
if d == True:
fig3 = plt.figure()
cx = fig3.add_subplot(111)
x = range(5000)
y = EE
cx.plot(x, y)
plt.title('FWA Error function', fontname='times new Roman', fontsize='10.5')
plt.xlabel('Number of iterations', fontname='times new Roman', fontsize='10.5')
plt.ylabel('Error', fontname='times new Roman', fontsize='10.5')
plt.show()
return train_error, error