-
Notifications
You must be signed in to change notification settings - Fork 84
/
finetune.py
45 lines (39 loc) · 1.68 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from model import PopMusicTransformer
from glob import glob
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def main():
# declare model
model = PopMusicTransformer(
checkpoint='REMI-tempo-checkpoint',
is_training=True)
# prepare data
midi_paths = glob('YOUR PERSOANL FOLDER/*.midi') # you need to revise it
training_data = model.prepare_data(midi_paths=midi_paths)
# check output checkpoint folder
####################################
# if you use "REMI-tempo-chord-checkpoint" for the pre-trained checkpoint
# please name your output folder as something with "chord"
# for example: my-love-chord, cute-doggy-chord, ...
# if use "REMI-tempo-checkpoint"
# for example: my-love, cute-doggy, ...
####################################
output_checkpoint_folder = 'REMI-finetune' # your decision
if not os.path.exists(output_checkpoint_folder):
os.mkdir(output_checkpoint_folder)
# finetune
model.finetune(
training_data=training_data,
output_checkpoint_folder=output_checkpoint_folder)
####################################
# after finetuning, please choose which checkpoint you want to try
# and change the checkpoint names you choose into "model"
# and copy the "dictionary.pkl" into the your output_checkpoint_folder
# ***** the same as the content format in "REMI-tempo-checkpoint" *****
# and then, you can use "main.py" to generate your own music!
# (do not forget to revise the checkpoint path to your own in "main.py")
####################################
# close
model.close()
if __name__ == '__main__':
main()