forked from sakshamarora1/image2latex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image2latex.py
512 lines (414 loc) · 17.3 KB
/
image2latex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.distributions.uniform import Uniform
import numpy as np
import os
import PIL
from collections import Counter
images_dir = "formula_images_processed"
formula_list = "im2latex_formulas.norm.lst"
train_list = "im2latex_train_filter.lst"
validate_list = "im2latex_validate_filter.lst"
test_list = "im2latex_test_filter.lst"
START_TOKEN = 0
PAD_TOKEN = 1
END_TOKEN = 2
UNK_TOKEN = 3
class Vocab(object):
def __init__(self):
self.sign2id = {"<s>": START_TOKEN, "</s>": END_TOKEN,
"<pad>": PAD_TOKEN, "<unk>": UNK_TOKEN}
self.id2sign = dict((idx, token)
for token, idx in self.sign2id.items())
self.length = 4
def add_sign(self, sign):
if sign not in self.sign2id:
self.sign2id[sign] = self.length
self.id2sign[self.length] = sign
self.length += 1
def __len__(self):
return self.length
def build_vocab(min_count=10):
"""
traverse training formulas to make vocab
and store the vocab in the file
"""
vocab = Vocab()
counter = Counter()
formulas_file = formula_list
with open(formula_list, "r", encoding="utf-8", errors="ignore", newline="\n") as f1:
formulas = [formula.replace("\n", "").replace("\t", " ") for formula in f1.readlines()]
with open(train_list, "r", encoding="utf-8", errors="ignore", newline="\n") as f2:
for line in f2:
img_filename, idx = line.strip('\n').split()
idx = int(idx)
formula = formulas[idx].split()
counter.update(formula)
for word, count in counter.most_common():
if count >= min_count:
vocab.add_sign(word)
vocab = build_vocab()
class Image2LatexDataset(torch.utils.data.Dataset):
def __init__(self, images_dir, formula_list, train_list):
self.images_dir = images_dir
with open(formula_list, "r", encoding="utf-8", errors="ignore", newline="\n") as f1:
self.formulas = [formula.replace("\n", "").replace("\t", " ") for formula in f1.readlines()]
with open(train_list, "r", encoding="utf-8", errors="ignore", newline="\n") as f2:
self.train_set = [t.replace("\n", "").split() for t in f2.readlines()]
def __getitem__(self, idx):
item = self.train_set[idx]
filename = item[0]
formula = self.formulas[int(item[1])]
# render_type = item[2]
image = PIL.Image.open(self.images_dir + "/" + filename)
return torchvision.transforms.ToTensor()(image), formula
def __len__(self):
return len(self.train_set)
train_set = Image2LatexDataset(images_dir, formula_list, train_list)
validate_set = Image2LatexDataset(images_dir, formula_list, validate_list)
test_set = Image2LatexDataset(images_dir, formula_list, test_list)
INIT = 1e-2
class Encoder(nn.Module):
def __init__(self, out_channels=512, add_pos_feat=True):
super(Encoder, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2, 2, 1),
nn.Conv2d(64, 128, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2, 2, 1),
nn.Conv2d(128, 256, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d((2, 1), (2, 1), 0),
nn.Conv2d(256, out_channels, 3, 1, 0),
nn.ReLU()
)
self.add_pos_feat = add_pos_feat
def forward(self, images):
encoded_images = self.cnn(images)
encoded_images = encoded_images.permute(0, 2, 3, 1) # [B, H', W', 512]
B, H, W, C = encoded_imgs.shape
encoded_images = encoded_images.contiguous().view(B, H*W, C)
if self.add_pos_feat:
encoded_images = self.add_positional_features(encoded_images)
return encoded_images
def add_positional_features(self, tensor: torch.Tensor, min_timescale: float = 1.0, max_timescale: float = 1.0e4):
"""
Implements the frequency-based positional encoding described
in `Attention is all you Need
Parameters
----------
tensor : ``torch.Tensor``
a Tensor with shape (batch_size, timesteps, hidden_dim).
min_timescale : ``float``, optional (default = 1.0)
The largest timescale to use.
Returns
-------
The input tensor augmented with the sinusoidal frequencies.
"""
_, timesteps, hidden_dim = tensor.size()
timestep_range = torch.arange(0, timesteps, dtype=torch.long, device= tensor.device).data.float()
# We're generating both cos and sin frequencies,
# so half for each.
num_timescales = hidden_dim // 2
timescale_range = torch.arange(0, num_timescales, dtype=torch.long, device= tensor.device).data.float()
log_timescale_increments = math.log(
float(max_timescale) / float(min_timescale)) / float(num_timescales - 1)
inverse_timescales = min_timescale * torch.exp(timescale_range * -log_timescale_increments)
# Broadcasted multiplication - shape (timesteps, num_timescales)
scaled_time = timestep_range.unsqueeze(1) * inverse_timescales.unsqueeze(0)
# shape (timesteps, 2 * num_timescales)
sinusoids = torch.randn(
scaled_time.size(0), 2*scaled_time.size(1), device=tensor.device)
sinusoids[:, ::2] = torch.sin(scaled_time)
sinusoids[:, 1::2] = torch.sin(scaled_time)
if hidden_dim % 2 != 0:
# if the number of dimensions is odd, the cos and sin
# timescales had size (hidden_dim - 1) / 2, so we need
# to add a row of zeros to make up the difference.
sinusoids = torch.cat(
[sinusoids, sinusoids.new_zeros(timesteps, 1)], 1)
return tensor + sinusoids.unsqueeze(0)
class Decoder(nn.Module):
def __init__(self, encoder_outdim, decoder_rnn_hidden, embed_size, output_size):
super(Decoder, self).__init__()
self.rnn_decoder = nn.LSTMCell(decoder_rnn_hidden+embed_size, decoder_rnn_hidden)
self.embedding = nn.Embedding(output_size, embed_size)
self.init_wh = nn.Linear(encoder_outdim, decoder_rnn_hidden)
self.init_wc = nn.Linear(encoder_outdim, decoder_rnn_hidden)
self.init_wo = nn.Linear(encoder_outdim, decoder_rnn_hidden)
def forward(self, encoder_output):
mean_encoder_output = encoder_output.mean(dim=1)
h = nn.Tanh()(self.init_wh(mean_encoder_output))
c = nn.Tanh()(self.init_wc(mean_encoder_output))
o = nn.Tanh()(self.init_wo(mean_encoder_output))
class Image2LatexModel(nn.Module):
def __init__(self):
super(Image2LatexModel, self).__init__()
def collate_fn(sign2id, batch):
size = batch[0][0].size()
batch = [img_formula for img_formula in batch
if img_formula[0].size() == size]
batch.sort(key=lambda img_formula: len(img_formula[1].split()),
reverse=True)
imgs, formulas = zip(*batch)
formulas = [formula.split() for formula in formulas]
tgt4training = formulas2tensor([['<s>']+formula for formula in formulas], sign2id)
tgt4cal_loss = formulas2tensor([formula+['</s>'] for formula in formulas], sign2id)
imgs = torch.stack(imgs, dim=0)
return imgs, tgt4training, tgt4cal_loss
def formulas2tensor(formulas, sign2id):
"""convert formula to tensor"""
batch_size = len(formulas)
max_len = len(formulas[0])
tensors = torch.ones(batch_size, max_len, dtype=torch.long) * PAD_TOKEN
for i, formula in enumerate(formulas):
for j, sign in enumerate(formula):
tensors[i][j] = sign2id.get(sign, UNK_TOKEN)
def cal_loss(pred, targets):
"""args:
pred: probability distribution return by model
[B, MAX_LEN, voc_size]
targets: target formulas
[B, MAX_LEN]
"""
padding = torch.ones_like(targets) * PAD_TOKEN
mask = (targets != padding)
targets = targets.masked_select(mask)
pred = pred.masked_select(
mask.unsqueeze(2).expand(-1, -1, pred.size(2))
).contiguous().view(-1, pred.size(2))
pred = torch.log(pred)
assert pred.size(0) == targets.size(0)
loss = F.nll_loss(pred, targets)
return loss
def get_checkpoint(ckpt_dir):
"""return full path if there is ckpt in ckpt_dir else None"""
if not os.path.isdir(ckpt_dir):
raise FileNotFoundError("No checkpoint found in {}".format(ckpt_dir))
ckpts = [f for f in os.listdir(ckpt_dir) if f.startswith('ckpt')]
if not ckpts:
raise FileNotFoundError("No checkpoint found in {}".format(ckpt_dir))
last_ckpt, max_epoch = None, 0
for ckpt in ckpts:
epoch = int(ckpt.split('-')[1])
if epoch > max_epoch:
max_epoch = epoch
last_ckpt = ckpt
full_path = os.path.join(ckpt_dir, last_ckpt)
print("Get checkpoint from {} for training".format(full_path))
return full_path
def schedule_sample(prev_logit, prev_tgt, epsilon):
prev_out = torch.argmax(prev_logit, dim=1, keepdim=True)
prev_choices = torch.cat([prev_out, prev_tgt], dim=1) # [B, 2]
batch_size = prev_choices.size(0)
prob = Bernoulli(torch.tensor([epsilon]*batch_size).unsqueeze(1))
# sampling
sample = prob.sample().long().to(prev_tgt.device)
next_inp = torch.gather(prev_choices, 1, sample)
return next_inp
def cal_epsilon(k, step, method):
"""
Reference:
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
See details in https://arxiv.org/pdf/1506.03099.pdf
"""
assert method in ['inv_sigmoid', 'exp', 'teacher_forcing']
if method == 'exp':
return k**step
elif method == 'inv_sigmoid':
return k/(k+math.exp(step/k))
else:
return 1.
class Model:
def __init__(self, optimizer, model, lr_scheduler,
train_loader, val_loader, args,
use_cuda=True, max_epoch=25):
self.optimizer = optimizer
self.model = model
self.lr_scheduler = lr_scheduler
self.train_loader = train_loader
self.val_loader = val_loader
self.args = args
self.step = 0
self.epoch = 0
self.total_step = 0
self.last_epoch = max_epoch
self.best_val_loss = None
self.device = torch.device("cuda" if use_cuda else "cpu")
def train(self):
message = "Epoch {}, step:{}/{} {:.2f}%, Loss:{:.4f}, Perplexity:{:.4f}"
while self.epoch <= self.last_epoch:
self.model.train()
losses = 0.0
for imgs, tgt4training, tgt4cal_loss in self.train_loader:
self.optimizer.zero_grad()
imgs = imgs.to(self.device)
tgt4training = tgt4training.to(self.device)
tgt4cal_loss = tgt4cal_loss.to(self.device)
epsilon = cal_epsilon(
self.args.decay_k, self.total_step, self.args.sample_method)
pred = self.model(imgs, tgt4training, epsilon)
# calculate loss
loss = cal_loss(pred, tgt4cal_loss)
self.step += 1
self.total_step += 1
loss.backward()
clip_grad_norm_(self.model.parameters(), self.args.clip)
self.optimizer.step()
step_loss = loss.item()
losses += step_loss
# log message
if self.step % self.args.print_freq == 0:
avg_loss = losses / self.args.print_freq
print(message.format(
self.epoch, self.step, len(self.train_loader),
100 * self.step / len(self.train_loader),
avg_loss,
2**avg_loss
))
losses = 0.0
val_loss = self.validate()
self.lr_scheduler.step(val_loss)
self.save_model('ckpt-{}-{:.4f}'.format(self.epoch, val_loss))
self.epoch += 1
self.step = 0
def validate(self):
self.model.eval()
val_total_loss = 0.0
mes = "Epoch {}, validation average loss:{:.4f}, Perplexity:{:.4f}"
with torch.no_grad():
for imgs, tgt4training, tgt4cal_loss in self.val_loader:
imgs = imgs.to(self.device)
tgt4training = tgt4training.to(self.device)
tgt4cal_loss = tgt4cal_loss.to(self.device)
epsilon = cal_epsilon(
self.args.decay_k, self.total_step, self.args.sample_method)
pred = self.model(imgs, tgt4training, epsilon)
loss = cal_loss(pred, tgt4cal_loss)
val_total_loss += loss
avg_loss = val_total_loss / len(self.val_loader)
print(mes.format(
self.epoch, avg_loss, 2**avg_loss
))
if self.best_val_loss is None or avg_loss < self.best_val_loss:
self.best_val_loss = avg_loss
self.save_model('best_ckpt')
return avg_loss
def predict(self):
self.model.eval()
predictions = []
with torch.no_grad():
for imgs, tgt4training, tgt4cal_loss in self.val_loader:
imgs = imgs.to(self.device)
tgt4training = tgt4training.to(self.device)
tgt4cal_loss = tgt4cal_loss.to(self.device)
epsilon = cal_epsilon(
self.args.decay_k, self.total_step, self.args.sample_method)
pred = self.model(imgs, tgt4training, epsilon)
# TODO
predictions.append(pred)
# return
def save_model(self, model_name):
if not os.path.isdir(self.args.save_dir):
os.makedirs(self.args.save_dir)
save_path = join(self.args.save_dir, model_name+'.pt')
print("Saving checkpoint to {}".format(save_path))
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'lr_sche': self.lr_scheduler.state_dict(),
'args': self.args
}, save_path)
def train(args):
max_epoch = args.epoches
from_check_point = args.from_check_point
if from_check_point:
checkpoint_path = get_checkpoint(args.save_dir)
checkpoint = torch.load(checkpoint_path)
args = checkpoint['args']
print("Training args:", args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
use_cuda = True if args.cuda and torch.cuda.is_available() else False
device = torch.device("cuda" if use_cuda else "cpu")
# data loader
print("Construct data loader...")
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
collate_fn=partial(collate_fn, vocab.sign2id),
pin_memory=True if use_cuda else False,
num_workers=4)
val_loader = DataLoader(
validate_set,
batch_size=args.batch_size,
collate_fn=partial(collate_fn, vocab.sign2id),
pin_memory=True if use_cuda else False,
num_workers=4)
# construct model
print("Construct model")
vocab_size = len(vocab)
model = Image2LatexModel(
vocab_size, args.emb_dim, args.dec_rnn_h,
add_pos_feat=args.add_position_features,
dropout=args.dropout
)
model = model.to(device)
print("Model Settings:")
print(model)
# construct optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr)
lr_scheduler = ReduceLROnPlateau(
optimizer,
"min",
factor=args.lr_decay,
patience=args.lr_patience,
verbose=True,
min_lr=args.min_lr)
if from_check_point:
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
lr_scheduler.load_state_dict(checkpoint['lr_sche'])
# init model from checkpoint
model = Model(optimizer, model, lr_scheduler,
train_loader, val_loader, args,
use_cuda=use_cuda,
init_epoch=epoch, last_epoch=max_epoch)
else:
model = Model(optimizer, model, lr_scheduler,
train_loader, val_loader, args,
use_cuda=use_cuda,
init_epoch=1, last_epoch=args.epoches)
model.train()
args_cuda = True
args_model_path = "best_ckpt.pt"
args_batch_size = 32
args_result_path = "result.txt"
def test():
checkpoint = torch.load(join(args_model_path))
model_args = checkpoint['args']
use_cuda = True if args_cuda and torch.cuda.is_available() else False
data_loader = DataLoader(
test_set,
batch_size=args_batch_size,
collate_fn=partial(collate_fn, vocab.sign2id),
pin_memory=True if use_cuda else False,
num_workers=4
)
model = Model(optimizer, model, lr_scheduler,
train_loader, val_loader, args,
use_cuda=use_cuda,
init_epoch=epoch, last_epoch=max_epoch
)
predictions = model.predict()
# TODO
# Get the index of corresponding formulas and match them simply if they are same of not
# Write the predicted formula's index to result file along with image name