forked from LBH1024/CAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
119 lines (96 loc) · 4.87 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import time
import pickle as pkl
from torch.utils.data import DataLoader, Dataset, RandomSampler
class HMERDataset(Dataset):
def __init__(self, params, image_path, label_path, words, is_train=True):
super(HMERDataset, self).__init__()
if image_path.endswith('.pkl'):
with open(image_path, 'rb') as f:
self.images = pkl.load(f)
elif image_path.endswith('.list'):
with open(image_path, 'r') as f:
lines = f.readlines()
self.images = {}
print(f'data files: {lines}')
for line in lines:
name = line.strip()
print(f'loading data file: {name}')
start = time.time()
with open(name, 'rb') as f:
images = pkl.load(f)
self.images.update(images)
print(f'loading {name} cost: {time.time() - start:.2f} seconds!')
with open(label_path, 'r') as f:
self.labels = f.readlines()
self.words = words
self.is_train = is_train
self.params = params
def __len__(self):
assert len(self.images) == len(self.labels)
return len(self.labels)
def __getitem__(self, idx):
name, *labels = self.labels[idx].strip().split()
name = name.split('.')[0] if name.endswith('jpg') else name
image = self.images[name]
image = torch.Tensor(255-image) / 255
image = image.unsqueeze(0)
labels.append('eos')
words = self.words.encode(labels)
words = torch.LongTensor(words)
return image, words
def get_crohme_dataset(params):
words = Words(params['word_path'])
params['word_num'] = len(words)
print(f"训练数据路径 images: {params['train_image_path']} labels: {params['train_label_path']}")
print(f"验证数据路径 images: {params['eval_image_path']} labels: {params['eval_label_path']}")
train_dataset = HMERDataset(params, params['train_image_path'], params['train_label_path'], words, is_train=True)
eval_dataset = HMERDataset(params, params['eval_image_path'], params['eval_label_path'], words, is_train=False)
train_sampler = RandomSampler(train_dataset)
eval_sampler = RandomSampler(eval_dataset)
train_loader = DataLoader(train_dataset, batch_size=params['batch_size'], sampler=train_sampler,
num_workers=params['workers'], collate_fn=collate_fn_dict[params['collate_fn']], pin_memory=True)
eval_loader = DataLoader(eval_dataset, batch_size=1, sampler=eval_sampler,
num_workers=params['workers'], collate_fn=collate_fn_dict[params['collate_fn']], pin_memory=True)
print(f'train dataset: {len(train_dataset)} train steps: {len(train_loader)} '
f'eval dataset: {len(eval_dataset)} eval steps: {len(eval_loader)} ')
return train_loader, eval_loader
def collate_fn(batch_images):
max_width, max_height, max_length = 0, 0, 0
batch, channel = len(batch_images), batch_images[0][0].shape[0]
proper_items = []
for item in batch_images:
if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[2] * max_height > 1600 * 320:
continue
max_height = item[0].shape[1] if item[0].shape[1] > max_height else max_height
max_width = item[0].shape[2] if item[0].shape[2] > max_width else max_width
max_length = item[1].shape[0] if item[1].shape[0] > max_length else max_length
proper_items.append(item)
images, image_masks = torch.zeros((len(proper_items), channel, max_height, max_width)), torch.zeros((len(proper_items), 1, max_height, max_width))
labels, labels_masks = torch.zeros((len(proper_items), max_length)).long(), torch.zeros((len(proper_items), max_length))
for i in range(len(proper_items)):
_, h, w = proper_items[i][0].shape
images[i][:, :h, :w] = proper_items[i][0]
image_masks[i][:, :h, :w] = 1
l = proper_items[i][1].shape[0]
labels[i][:l] = proper_items[i][1]
labels_masks[i][:l] = 1
return images, image_masks, labels, labels_masks
class Words:
def __init__(self, words_path):
with open(words_path) as f:
words = f.readlines()
print(f'共 {len(words)} 类符号。')
self.words_dict = {words[i].strip(): i for i in range(len(words))}
self.words_index_dict = {i: words[i].strip() for i in range(len(words))}
def __len__(self):
return len(self.words_dict)
def encode(self, labels):
label_index = [self.words_dict[item] for item in labels]
return label_index
def decode(self, label_index):
label = ' '.join([self.words_index_dict[int(item)] for item in label_index])
return label
collate_fn_dict = {
'collate_fn': collate_fn
}