|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import copy |
| 4 | +import gym |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.functional as F |
| 8 | +import torch.optim as optim |
| 9 | +from tensorboardX import SummaryWriter |
| 10 | +from buffer import ReplayBuffer |
| 11 | + |
| 12 | +''' |
| 13 | +Deep Deterministic Policy Gradients (DDPG) |
| 14 | +Original paper: |
| 15 | + CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING https://arxiv.org/abs/1509.02971 |
| 16 | +''' |
| 17 | + |
| 18 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 19 | + |
| 20 | +# parameters |
| 21 | +env_name = "Pendulum-v1" |
| 22 | +tau = 0.01 |
| 23 | +epsilon = 0.8 |
| 24 | +epsilon_decay = 0.9999 |
| 25 | +actor_lr = 3e-4 |
| 26 | +critic_lr = 3e-4 |
| 27 | +discount = 0.99 |
| 28 | +buffer_size = 10000 |
| 29 | +batch_size = 128 |
| 30 | +max_episode = 40000 |
| 31 | +max_step_size = 500 |
| 32 | +seed = 1 |
| 33 | + |
| 34 | +render = True |
| 35 | +load = False |
| 36 | + |
| 37 | +env = gym.make(env_name) |
| 38 | + |
| 39 | +def envAction(action): |
| 40 | + |
| 41 | + low = env.action_space.low |
| 42 | + high = env.action_space.high |
| 43 | + action = low + (action + 1.0) * 0.5 * (high - low) |
| 44 | + action = np.clip(action, low, high) |
| 45 | + |
| 46 | + return action |
| 47 | + |
| 48 | +# Set seeds |
| 49 | +env.seed(seed) |
| 50 | +torch.manual_seed(seed) |
| 51 | +np.random.seed(seed) |
| 52 | + |
| 53 | +state_dim = env.observation_space.shape[0] |
| 54 | +action_dim = env.action_space.shape[0] |
| 55 | + |
| 56 | + |
| 57 | +class Actor(nn.Module): |
| 58 | + |
| 59 | + def __init__(self, state_dim, action_dim, init_w=3e-3): |
| 60 | + super(Actor, self).__init__() |
| 61 | + |
| 62 | + self.l1 = nn.Linear(state_dim, 256) |
| 63 | + self.l2 = nn.Linear(256, 256) |
| 64 | + self.l3 = nn.Linear(256, action_dim) |
| 65 | + |
| 66 | + self.l3.weight.data.uniform_(init_w, init_w) |
| 67 | + self.l3.bias.data.uniform_(-init_w, init_w) |
| 68 | + |
| 69 | + def forward(self, state): |
| 70 | + a = F.relu(self.l1(state)) |
| 71 | + a = F.relu(self.l2(a)) |
| 72 | + a = torch.tanh(self.l3(a)) |
| 73 | + |
| 74 | + return a |
| 75 | + |
| 76 | + |
| 77 | +class Critic(nn.Module): |
| 78 | + |
| 79 | + def __init__(self, state_dim, action_dim, init_w=3e-3): |
| 80 | + super(Critic, self).__init__() |
| 81 | + |
| 82 | + self.l1 = nn.Linear(state_dim + action_dim, 256) |
| 83 | + self.l2 = nn.Linear(256, 256) |
| 84 | + self.l3 = nn.Linear(256, 1) |
| 85 | + self.l3.weight.data.uniform_(-init_w, init_w) |
| 86 | + self.l3.bias.data.uniform_(-init_w, init_w) |
| 87 | + |
| 88 | + def forward(self, state, action): |
| 89 | + sa = torch.cat((state, action), 1) |
| 90 | + q = F.relu(self.l1(sa)) |
| 91 | + q = F.relu(self.l2(q)) |
| 92 | + q = self.l3(q) |
| 93 | + |
| 94 | + return q |
| 95 | + |
| 96 | + |
| 97 | +class DDPG: |
| 98 | + |
| 99 | + def __init__(self): |
| 100 | + super(DDPG, self).__init__() |
| 101 | + |
| 102 | + self.actor = Actor(state_dim, action_dim).to(device) |
| 103 | + self.actor_target = copy.deepcopy(self.actor) |
| 104 | + self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) |
| 105 | + |
| 106 | + self.critic = Critic(state_dim, action_dim).to(device) |
| 107 | + self.critic_target = copy.deepcopy(self.critic) |
| 108 | + self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr) |
| 109 | + |
| 110 | + self.buffer = ReplayBuffer(buffer_size, batch_size) |
| 111 | + |
| 112 | + self.num_training = 1 |
| 113 | + |
| 114 | + self.writer = SummaryWriter('./log') |
| 115 | + |
| 116 | + os.makedirs('./model/', exist_ok=True) |
| 117 | + |
| 118 | + def act(self, state): |
| 119 | + state = torch.FloatTensor(state.reshape(1, -1)).to(device) |
| 120 | + return self.actor(state).cpu().data.numpy().flatten() |
| 121 | + |
| 122 | + def put(self, *transition): |
| 123 | + state, action, reward, next_state, done = transition |
| 124 | + state = torch.FloatTensor(state).to(device).unsqueeze(0) |
| 125 | + action = torch.FloatTensor(action).to(device).unsqueeze(0) |
| 126 | + Q = self.critic(state, action).detach() |
| 127 | + self.buffer.add(transition) |
| 128 | + |
| 129 | + return Q.cpu().item() |
| 130 | + |
| 131 | + def update(self): |
| 132 | + |
| 133 | + if not self.buffer.sample_available(): |
| 134 | + return |
| 135 | + |
| 136 | + state, action, reward, next_state, done = self.buffer.sample() |
| 137 | + |
| 138 | + # state = (state - self.buffer.state_mean())/(self.buffer.state_std() + 1e-7) |
| 139 | + # next_state = (next_state - self.buffer.state_mean())/(self.buffer.state_std() + 1e-6) |
| 140 | + # reward = reward / (self.buffer.reward_std() + 1e-6) |
| 141 | + |
| 142 | + state = torch.tensor(state, dtype=torch.float).to(device) |
| 143 | + action = torch.tensor(action, dtype=torch.float).to(device) |
| 144 | + reward = torch.tensor(reward, dtype=torch.float).view(batch_size, -1).to(device) |
| 145 | + next_state = torch.tensor(next_state, dtype=torch.float).to(device) |
| 146 | + done = torch.tensor(done, dtype=torch.float).to(device).view(batch_size, -1).to(device) |
| 147 | + |
| 148 | + with torch.no_grad(): |
| 149 | + next_action = self.actor_target(next_state) |
| 150 | + target_Q = self.critic_target(next_state, next_action) |
| 151 | + target_Q = reward + (1 - done) * discount * target_Q |
| 152 | + |
| 153 | + # Get current Q estimates |
| 154 | + current_Q = self.critic(state, action) |
| 155 | + |
| 156 | + # Compute critic loss |
| 157 | + critic_loss = F.mse_loss(current_Q, target_Q) |
| 158 | + self.writer.add_scalar('Loss/critic_loss', critic_loss, global_step=self.num_training) |
| 159 | + |
| 160 | + # Optimize the critic |
| 161 | + self.critic_optimizer.zero_grad() |
| 162 | + critic_loss.backward() |
| 163 | + self.critic_optimizer.step() |
| 164 | + |
| 165 | + # Compute actor losse |
| 166 | + actor_loss = -self.critic(state, self.actor(state)).mean() |
| 167 | + self.writer.add_scalar('Loss/actor_loss', actor_loss, global_step=self.num_training) |
| 168 | + |
| 169 | + # Optimize the actor |
| 170 | + self.actor_optimizer.zero_grad() |
| 171 | + actor_loss.backward() |
| 172 | + self.actor_optimizer.step() |
| 173 | + |
| 174 | + # Update the frozen target models |
| 175 | + for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): |
| 176 | + target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) |
| 177 | + |
| 178 | + for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): |
| 179 | + target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) |
| 180 | + |
| 181 | + self.num_training += 1 |
| 182 | + |
| 183 | + def save(self): |
| 184 | + torch.save(self.actor.state_dict(), './model/actor.pth') |
| 185 | + torch.save(self.critic.state_dict(), './model/critic.pth') |
| 186 | + print("====================================") |
| 187 | + print("Model has been saved...") |
| 188 | + print("====================================") |
| 189 | + |
| 190 | + def load(self): |
| 191 | + torch.load(self.actor.state_dict(), './model/actor.pth') |
| 192 | + torch.load(self.critic.state_dict(), './model/critic.pth') |
| 193 | + print("====================================") |
| 194 | + print("Model has been loaded...") |
| 195 | + print("====================================") |
| 196 | + |
| 197 | + |
| 198 | +if __name__ == '__main__': |
| 199 | + agent = DDPG() |
| 200 | + state = env.reset() |
| 201 | + |
| 202 | + if load: |
| 203 | + agent.load() |
| 204 | + if render: |
| 205 | + env.render() |
| 206 | + |
| 207 | + print("====================================") |
| 208 | + print("Collection Experience...") |
| 209 | + print("====================================") |
| 210 | + |
| 211 | + total_step = 0 |
| 212 | + |
| 213 | + for episode in range(max_episode): |
| 214 | + |
| 215 | + total_reward = 0 |
| 216 | + state = env.reset() |
| 217 | + |
| 218 | + for step in range(max_step_size): |
| 219 | + |
| 220 | + total_step += 1 |
| 221 | + |
| 222 | + action = agent.act(state) |
| 223 | + |
| 224 | + if epsilon > np.random.random(): |
| 225 | + action = (action + np.random.normal(0, 0.2, size=action_dim)).clip(-1, 1) |
| 226 | + |
| 227 | + next_state, reward, done, _ = env.step(envAction(action)) |
| 228 | + |
| 229 | + # reward trick of BipedalWalker-v3 |
| 230 | + # if reward == -100: |
| 231 | + # reward = -1 |
| 232 | + |
| 233 | + if render: |
| 234 | + env.render() |
| 235 | + |
| 236 | + agent.put(state, action, reward, next_state, done) |
| 237 | + |
| 238 | + agent.update() |
| 239 | + |
| 240 | + total_reward += reward |
| 241 | + |
| 242 | + state = next_state |
| 243 | + |
| 244 | + epsilon = max(epsilon_decay*epsilon, 0.10) |
| 245 | + agent.writer.add_scalar('Other/epsilon', epsilon, global_step=total_step) |
| 246 | + |
| 247 | + if done: |
| 248 | + break |
| 249 | + |
| 250 | + if episode % 10 == 0: |
| 251 | + agent.save() |
| 252 | + |
| 253 | + agent.writer.add_scalar('Other/total_reward', total_reward, global_step=episode) |
0 commit comments