diff --git "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(6)--\347\245\236\347\273\217\347\275\221\347\273\234.md" "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(6)--\347\245\236\347\273\217\347\275\221\347\273\234.md" index 5c1e715..a395253 100644 --- "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(6)--\347\245\236\347\273\217\347\275\221\347\273\234.md" +++ "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(6)--\347\245\236\347\273\217\347\275\221\347\273\234.md" @@ -1,10 +1,10 @@ 上篇主要讨论了决策树算法。首先从决策树的基本概念出发,引出决策树基于树形结构进行决策,进一步介绍了构造决策树的递归流程以及其递归终止条件,在递归的过程中,划分属性的选择起到了关键作用,因此紧接着讨论了三种评估属性划分效果的经典算法,介绍了剪枝策略来解决原生决策树容易产生的过拟合问题,最后简述了属性连续值/缺失值的处理方法。本篇将讨论现阶段十分热门的另一个经典监督学习算法--神经网络(neural network)。 -#**5、神经网络** +# **5、神经网络** 在机器学习中,神经网络一般指的是“神经网络学习”,是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用得最广泛的一个定义是“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应”。 -##**5.1 神经元模型** +## **5.1 神经元模型** 神经网络中最基本的单元是神经元模型(neuron)。在生物神经网络的原始机制中,每个神经元通常都有多个树突(dendrite),一个轴突(axon)和一个细胞体(cell body),树突短而多分支,轴突长而只有一个;在功能上,树突用于传入其它神经元传递的神经冲动,而轴突用于将神经冲动传出到其它神经元,当树突或细胞体传入的神经冲动使得神经元兴奋时,该神经元就会通过轴突向其它神经元传递兴奋。神经元的生物学结构如下图所示,不得不说高中的生化知识大学忘得可是真干净... @@ -48,7 +48,7 @@ 根据上面的特点可以得知:这里的“前馈”指的是网络拓扑结构中不存在环或回路,而不是指该网络只能向前传播而不能向后传播(下节中的BP神经网络正是基于前馈神经网络而增加了反馈调节机制)。神经网络的学习过程就是根据训练数据来调整神经元之间的“连接权”以及每个神经元的阈值,换句话说:神经网络所学习到的东西都蕴含在网络的连接权与阈值中。 -##**5.3 BP神经网络算法** +## **5.3 BP神经网络算法** 由上面可以得知:神经网络的学习主要蕴含在权重和阈值中,多层网络使用上面简单感知机的权重调整规则显然不够用了,BP神经网络算法即误差逆传播算法(error BackPropagation)正是为学习多层前馈神经网络而设计,BP神经网络算法是迄今为止最成功的的神经网络学习算法。 @@ -77,7 +77,7 @@ BP算法的更新规则是基于每个样本的预测值与真实类标的均方 ![12.png](https://i.loli.net/2018/10/17/5bc72ce227ff1.png) -##**5.4 全局最小与局部最小** +## **5.4 全局最小与局部最小** 模型学习的过程实质上就是一个寻找最优参数的过程,例如BP算法试图通过最速下降来寻找使得累积经验误差最小的权值与阈值,在谈到最优时,一般会提到局部极小(local minimum)和全局最小(global minimum)。 @@ -92,7 +92,7 @@ BP算法的更新规则是基于每个样本的预测值与真实类标的均方 * 使用“模拟退火”技术,这里不做具体介绍。 * 使用随机梯度下降,即在计算梯度时加入了随机因素,使得在局部最小时,计算的梯度仍可能不为0,从而迭代可以继续进行。 -##**5.5 深度学习** +## **5.5 深度学习** 理论上,参数越多,模型复杂度就越高,容量(capability)就越大,从而能完成更复杂的学习任务。深度学习(deep learning)正是一种极其复杂而强大的模型。 @@ -108,4 +108,4 @@ BP算法的更新规则是基于每个样本的预测值与真实类标的均方 深度学习可以理解为一种特征学习(feature learning)或者表示学习(representation learning),无论是DBN还是CNN,都是通过多个隐层来把与输出目标联系不大的初始输入转化为与输出目标更加密切的表示,使原来只通过单层映射难以完成的任务变为可能。即通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示,从而使得最后可以用简单的模型来完成复杂的学习任务。 -传统任务中,样本的特征需要人类专家来设计,这称为特征工程(feature engineering)。特征好坏对泛化性能有至关重要的影响。而深度学习为全自动数据分析带来了可能,可以自动产生更好的特征。 \ No newline at end of file +传统任务中,样本的特征需要人类专家来设计,这称为特征工程(feature engineering)。特征好坏对泛化性能有至关重要的影响。而深度学习为全自动数据分析带来了可能,可以自动产生更好的特征。