forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathterminal.c
461 lines (399 loc) · 16.5 KB
/
terminal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
Copyright 2012-2015 Benjamin Vedder [email protected]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* terminal.c
*
* Created on: 26 dec 2013
* Author: benjamin
*/
#include "ch.h"
#include "hal.h"
#include "terminal.h"
#include "mcpwm.h"
#include "mcpwm_foc.h"
#include "mc_interface.h"
#include "commands.h"
#include "hw.h"
#include "comm_can.h"
#include "utils.h"
#include "timeout.h"
#include "encoder.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
// Private variables
#define FAULT_VEC_LEN 25
static volatile fault_data fault_vec[FAULT_VEC_LEN];
static volatile int fault_vec_write = 0;
void terminal_process_string(char *str) {
enum { kMaxArgs = 64 };
int argc = 0;
char *argv[kMaxArgs];
char *p2 = strtok(str, " ");
while (p2 && argc < kMaxArgs) {
argv[argc++] = p2;
p2 = strtok(0, " ");
}
if (argc == 0) {
commands_printf("No command received\n");
return;
}
static mc_configuration mcconf; // static to save some stack
static mc_configuration mcconf_old; // static to save some stack
mcconf = *mc_interface_get_configuration();
mcconf_old = mcconf;
if (strcmp(argv[0], "ping") == 0) {
commands_printf("pong\n");
} else if (strcmp(argv[0], "stop") == 0) {
mc_interface_set_duty(0);
commands_printf("Motor stopped\n");
} else if (strcmp(argv[0], "last_adc_duration") == 0) {
commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
commands_printf("Latest injected ADC duration: %.4f ms", (double)(mc_interface_get_last_inj_adc_isr_duration() * 1000.0));
commands_printf("Latest sample ADC duration: %.4f ms\n", (double)(mc_interface_get_last_sample_adc_isr_duration() * 1000.0));
} else if (strcmp(argv[0], "kv") == 0) {
commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
} else if (strcmp(argv[0], "mem") == 0) {
size_t n, size;
n = chHeapStatus(NULL, &size);
commands_printf("core free memory : %u bytes", chCoreGetStatusX());
commands_printf("heap fragments : %u", n);
commands_printf("heap free total : %u bytes\n", size);
} else if (strcmp(argv[0], "threads") == 0) {
thread_t *tp;
static const char *states[] = {CH_STATE_NAMES};
commands_printf(" addr stack prio refs state name time ");
commands_printf("-------------------------------------------------------------");
tp = chRegFirstThread();
do {
commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
tp = chRegNextThread(tp);
} while (tp != NULL);
commands_printf("");
} else if (strcmp(argv[0], "fault") == 0) {
commands_printf("%s\n", mc_interface_fault_to_string(mc_interface_get_fault()));
} else if (strcmp(argv[0], "faults") == 0) {
if (fault_vec_write == 0) {
commands_printf("No faults registered since startup\n");
} else {
commands_printf("The following faults were registered since start:\n");
for (int i = 0;i < fault_vec_write;i++) {
commands_printf("Fault : %s", mc_interface_fault_to_string(fault_vec[i].fault));
commands_printf("Current : %.1f", (double)fault_vec[i].current);
commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
commands_printf("Voltage : %.2f", (double)fault_vec[i].voltage);
commands_printf("Duty : %.2f", (double)fault_vec[i].duty);
commands_printf("RPM : %.1f", (double)fault_vec[i].rpm);
commands_printf("Tacho : %d", fault_vec[i].tacho);
commands_printf("Cycles running : %d", fault_vec[i].cycles_running);
commands_printf("TIM duty : %d", (int)((float)fault_vec[i].tim_top * fault_vec[i].duty));
commands_printf("TIM val samp : %d", fault_vec[i].tim_val_samp);
commands_printf("TIM current samp : %d", fault_vec[i].tim_current_samp);
commands_printf("TIM top : %d", fault_vec[i].tim_top);
commands_printf("Comm step : %d", fault_vec[i].comm_step);
commands_printf("Temperature : %.2f\n", (double)fault_vec[i].temperature);
}
}
} else if (strcmp(argv[0], "rpm") == 0) {
commands_printf("Electrical RPM: %.2f rpm\n", (double)mc_interface_get_rpm());
} else if (strcmp(argv[0], "tacho") == 0) {
commands_printf("Tachometer counts: %i\n", mc_interface_get_tachometer_value(0));
} else if (strcmp(argv[0], "tim") == 0) {
chSysLock();
volatile int t1_cnt = TIM1->CNT;
volatile int t8_cnt = TIM8->CNT;
volatile int dir1 = !!(TIM1->CR1 & (1 << 4));
volatile int dir8 = !!(TIM8->CR1 & (1 << 4));
chSysUnlock();
int duty1 = TIM1->CCR1;
int duty2 = TIM1->CCR2;
int duty3 = TIM1->CCR3;
int top = TIM1->ARR;
int voltage_samp = TIM8->CCR1;
int current1_samp = TIM1->CCR4;
int current2_samp = TIM8->CCR2;
commands_printf("Tim1 CNT: %i", t1_cnt);
commands_printf("Tim8 CNT: %u", t8_cnt);
commands_printf("Duty cycle1: %u", duty1);
commands_printf("Duty cycle2: %u", duty2);
commands_printf("Duty cycle3: %u", duty3);
commands_printf("Top: %u", top);
commands_printf("Dir1: %u", dir1);
commands_printf("Dir8: %u", dir8);
commands_printf("Voltage sample: %u", voltage_samp);
commands_printf("Current 1 sample: %u", current1_samp);
commands_printf("Current 2 sample: %u\n", current2_samp);
} else if (strcmp(argv[0], "volt") == 0) {
commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
} else if (strcmp(argv[0], "param_detect") == 0) {
// Use COMM_MODE_DELAY and try to figure out the motor parameters.
if (argc == 4) {
float current = -1.0;
float min_rpm = -1.0;
float low_duty = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &min_rpm);
sscanf(argv[3], "%f", &low_duty);
if (current > 0.0 && current < mcconf.l_current_max &&
min_rpm > 10.0 && min_rpm < 3000.0 &&
low_duty > 0.02 && low_duty < 0.8) {
float cycle_integrator;
float coupling_k;
int8_t hall_table[8];
int hall_res;
if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k, hall_table, &hall_res)) {
commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
commands_printf("Coupling factor: %.2f", (double)coupling_k);
if (hall_res == 0) {
commands_printf("Detected hall sensor table:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -1) {
commands_printf("Hall sensor detection failed:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -2) {
commands_printf("WS2811 enabled. Hall sensors cannot be used.\n");
} else if (hall_res == -3) {
commands_printf("Encoder enabled. Hall sensors cannot be used.\n");
}
} else {
commands_printf("Detection failed. Try again with different parameters.\n");
}
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires three arguments.\n");
}
} else if (strcmp(argv[0], "rpm_dep") == 0) {
mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
} else if (strcmp(argv[0], "can_devs") == 0) {
commands_printf("CAN devices seen on the bus the past second:\n");
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 1.0) {
commands_printf("ID : %i", msg->id);
commands_printf("RX Time : %i", msg->rx_time);
commands_printf("Age (milliseconds) : %.2f", (double)(UTILS_AGE_S(msg->rx_time) * 1000.0));
commands_printf("RPM : %.2f", (double)msg->rpm);
commands_printf("Current : %.2f", (double)msg->current);
commands_printf("Duty : %.2f\n", (double)msg->duty);
}
}
} else if (strcmp(argv[0], "foc_encoder_detect") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
if (current > 0.0 && current <= mcconf.l_current_max) {
if (encoder_is_configured()) {
mc_motor_type type_old = mcconf.motor_type;
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
float offset = 0.0;
float ratio = 0.0;
bool inverted = false;
mcpwm_foc_encoder_detect(current, true, &offset, &ratio, &inverted);
mcconf.motor_type = type_old;
mc_interface_set_configuration(&mcconf);
commands_printf("Offset : %.2f", (double)offset);
commands_printf("Ratio : %.2f", (double)ratio);
commands_printf("Inverted : %s\n", inverted ? "true" : "false");
} else {
commands_printf("Encoder not enabled.\n");
}
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_res") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
if (current > 0.0 && current <= mcconf.l_current_max) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
commands_printf("Resistance: %.6f ohm\n", (double)mcpwm_foc_measure_resistance(current, 2000));
mc_interface_set_configuration(&mcconf_old);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_ind") == 0) {
if (argc == 2) {
float duty = -1.0;
sscanf(argv[1], "%f", &duty);
if (duty > 0.0) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mcconf.foc_f_sw = 3000.0;
mc_interface_set_configuration(&mcconf);
commands_printf("Inductance: %.2f microhenry\n", (double)(mcpwm_foc_measure_inductance(duty, 200, 0)));
mc_interface_set_configuration(&mcconf_old);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_linkage") == 0) {
if (argc == 5) {
float current = -1.0;
float duty = -1.0;
float min_erpm = -1.0;
float res = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &duty);
sscanf(argv[3], "%f", &min_erpm);
sscanf(argv[4], "%f", &res);
if (current > 0.0 && current <= mcconf.l_current_max && min_erpm > 0.0 && duty > 0.02 && res >= 0.0) {
float linkage;
conf_general_measure_flux_linkage(current, duty, min_erpm, res, &linkage);
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_res_ind") == 0) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
float res = 0.0;
float ind = 0.0;
mcpwm_foc_measure_res_ind(&res, &ind);
commands_printf("Resistance: %.6f ohm", (double)res);
commands_printf("Inductance: %.2f microhenry\n", (double)ind);
mc_interface_set_configuration(&mcconf_old);
} else if (strcmp(argv[0], "measure_linkage_foc") == 0) {
if (argc == 2) {
float duty = -1.0;
sscanf(argv[1], "%f", &duty);
if (duty > 0.0) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
const float res = (3.0 / 2.0) * mcconf.foc_motor_r;
// Disable timeout
systime_t tout = timeout_get_timeout_msec();
float tout_c = timeout_get_brake_current();
timeout_configure(60000, 0.0);
for (int i = 0;i < 100;i++) {
mc_interface_set_duty(((float)i / 100.0) * duty);
chThdSleepMilliseconds(20);
}
float vq_avg = 0.0;
float rpm_avg = 0.0;
float samples = 0.0;
float iq_avg = 0.0;
for (int i = 0;i < 1000;i++) {
vq_avg += mcpwm_foc_get_vq();
rpm_avg += mc_interface_get_rpm();
iq_avg += mc_interface_get_tot_current_directional();
samples += 1.0;
chThdSleepMilliseconds(1);
}
mc_interface_release_motor();
mc_interface_set_configuration(&mcconf_old);
// Enable timeout
timeout_configure(tout, tout_c);
vq_avg /= samples;
rpm_avg /= samples;
iq_avg /= samples;
float linkage = (vq_avg - res * iq_avg) / (rpm_avg * ((2.0 * M_PI) / 60.0));
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "foc_state") == 0) {
mcpwm_foc_print_state();
commands_printf(" ");
}
// The help command
else if (strcmp(argv[0], "help") == 0) {
commands_printf("Valid commands are:");
commands_printf("help");
commands_printf(" Show this help");
commands_printf("ping");
commands_printf(" Print pong here to see if the reply works");
commands_printf("stop");
commands_printf(" Stop the motor");
commands_printf("last_adc_duration");
commands_printf(" The time the latest ADC interrupt consumed");
commands_printf("kv");
commands_printf(" The calculated kv of the motor");
commands_printf("mem");
commands_printf(" Show memory usage");
commands_printf("threads");
commands_printf(" List all threads");
commands_printf("fault");
commands_printf(" Prints the current fault code");
commands_printf("faults");
commands_printf(" Prints all stored fault codes and conditions when they arrived");
commands_printf("rpm");
commands_printf(" Prints the current electrical RPM");
commands_printf("tacho");
commands_printf(" Prints tachometer value");
commands_printf("tim");
commands_printf(" Prints tim1 and tim8 settings");
commands_printf("volt");
commands_printf(" Prints different voltages");
commands_printf("param_detect [current] [min_rpm] [low_duty]");
commands_printf(" Spin up the motor in COMM_MODE_DELAY and compute its parameters.");
commands_printf(" This test should be performed without load on the motor.");
commands_printf(" Example: param_detect 5.0 600 0.06");
commands_printf("rpm_dep");
commands_printf(" Prints some rpm-dep values");
commands_printf("can_devs");
commands_printf(" Prints all CAN devices seen on the bus the past second");
commands_printf("foc_encoder_detect [current]");
commands_printf(" Run the motor at 1Hz on open loop and compute encoder settings");
commands_printf("measure_res [current]");
commands_printf(" Lock the motor with a current and calculate its resistance");
commands_printf("measure_ind [duty]");
commands_printf(" Send short voltage pulses, measure the current and calculate the motor inductance");
commands_printf("measure_linkage [current] [duty] [min_rpm] [motor_res]");
commands_printf(" Run the motor in BLDC delay mode and measure the flux linkage");
commands_printf(" example measure_linkage 5 0.5 700 0.076");
commands_printf(" tip: measure the resistance with measure_res first");
commands_printf("measure_res_ind");
commands_printf(" Measure the motor resistance and inductance with an incremental adaptive algorithm.");
commands_printf("measure_linkage_foc [duty]");
commands_printf(" Run the motor with FOC and measure the flux linkage.");
commands_printf("foc_state");
commands_printf(" Print some FOC state variables.\n");
} else {
commands_printf("Invalid command: %s\n"
"type help to list all available commands\n", argv[0]);
}
}
void terminal_add_fault_data(fault_data *data) {
fault_vec[fault_vec_write++] = *data;
if (fault_vec_write >= FAULT_VEC_LEN) {
fault_vec_write = 0;
}
}